Skip to main content
Log in

Electrochemical studies on wafer-scale synthesized silicon nanowalls for supercapacitor application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Silicon-based supercapacitors are highly essential for the utilization of supercapacitor technology in consumer electronics, owing to their on-chip integration with the well-established complementary metal–oxide–semiconductor-related fabrication technology. In this study, silicon nanowalls were carved on commercially available silicon wafers by using a facile, low-cost and complementary metal–oxide–semiconductor compatible method of metal (silver)-assisted chemical etching. The electron microscopic studies of the carved out silicon nanowalls reveal that they are smooth, single crystalline and vertically aligned to their base silicon wafer. Raman and ATR-FTIR spectroscopy confirm that the surface of the silicon nanowalls has Si–O–Si bonded structures. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) studies were carried out in the organic electrolyte tetraethylammonium tetrafluroborate (NEt4BF4) in propylene carbonate (PC). It is evident from both the CV and GCD studies that the silicon nanowalls exhibit redox peaks arising from the silver-related deep-level trap state in silicon in contact with adsorbed water and also from the oxidation of silicon and its hydrides by the water present in the electrolyte. The presence of silver in silicon nanowalls and water in the electrolyte are considered to be due to the minute amount of silver left over during its removal by HNO3, owing to the bunching of nanowalls and the highly moisture sensitive nature of the electrolyte, respectively. The influence of such redox peaks on capacitance and cycle life are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gür T M 2018 Energy Environ. Sci. 11 2696

    Article  Google Scholar 

  2. González A, Goikolea E, Barrena J A and Mysyk R 2016 Renew. Sust. Energ. Rev. 58 1189

    Article  Google Scholar 

  3. Yan Y, Luo Y, Ma J, Li B, Xue H and Pang H 2018 Small 14 1801815

    Article  Google Scholar 

  4. Sharma K, Arora A and Tripathi S K 2019 J. Energy Storage 21 801

    Article  CAS  Google Scholar 

  5. Najib S and Erdem E 2019 Nanoscale Adv. 1 2817

    Article  Google Scholar 

  6. Gaboriau D, Aradilla D, Brachet M, Le Bideau J, Brousse T, Bidan G et al 2016 RSC Adv. 6 81017

    Article  CAS  Google Scholar 

  7. Alper J P, Vincent M, Carraro C and Maboudian R 2012 Appl. Phys. Lett. 100 163901

    Article  Google Scholar 

  8. Alper J P, Wang S, Rossi F, Salviati G, Yiu N, Carraro C et al 2014 Nano Lett. 14 1843

    Article  CAS  Google Scholar 

  9. Chatterjee S, Carter R, Oakes L, Erwin W R, Bardhan R and Pint C L 2014 J. Phys. Chem. C 118 10893

    Article  CAS  Google Scholar 

  10. Tao B, Zhang J, Miao F, Hui S and Wan L 2010 Electrochim. Acta 55 5258

    Article  CAS  Google Scholar 

  11. Thissandier F, Gentile P, Brousse T, Bidan G and Sadki S 2014 J. Power Sources 269 740

    Article  CAS  Google Scholar 

  12. Thissandier F, Gentile P, Pauc N, Brousse T, Bidan G and Sadki S 2014 Nano Energy 5 20

    Article  CAS  Google Scholar 

  13. Huang Z, Geyer N, Werner P, De Boor J and Gösele U 2011 Adv. Mater. 23 285

    Article  CAS  Google Scholar 

  14. Behera A K, Viswanath R, Lakshmanan C, Madapu K, Kamruddin M and Mathews T 2019 Microporous Mesoporous Mater. 273 99

    Article  CAS  Google Scholar 

  15. Behera A K, Viswanath R, Lakshmanan C, Polaki S, Sarguna R and Mathews T 2018 AIP Conf. Proc., AIP Publishing LLC p 050062

  16. Behera A K, Viswanath R, Lakshmanan C, Mathews T and Kamruddin M 2020 Nano-Struct. Nano-Objects 21 100424

    Article  CAS  Google Scholar 

  17. Li B, Yu D and Zhang S-L 1999 Phys. Rev. B 59 1645

    Article  CAS  Google Scholar 

  18. Wang R-P, Zhou G-W, Liu Y-I, Pan S-H, Zhang H-Z, Yu D-P et al 2000 Phys. Rev. B 61 16827

    Article  CAS  Google Scholar 

  19. Tsu R, Shen H and Dutta M 1992 Appl. Phys. Lett. 60 112

    Article  CAS  Google Scholar 

  20. Sailor M J 2012 Porous silicon in practice: preparation, characterization and applications (New York: John Wiley & Sons)

    Google Scholar 

  21. Sun X, Wang S, Wong N, Ma D, Lee S and Teo B K 2003 Inorg. Chem. 42 2398

    Article  CAS  Google Scholar 

  22. Canham L 2014 Handbook of porous silicon (Berlin: Springer)

    Google Scholar 

  23. Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y et al 2006 Adv. Funct. Mater. 16 387

    Article  CAS  Google Scholar 

  24. Peng K, Lu A, Zhang R and Lee S T 2008 Adv. Funct. Mater. 18 3026

    Article  CAS  Google Scholar 

  25. Shougee A, Konstantinou F, Albrecht T and Fobelets K 2017 IEEE Trans. Nanotechnol. 17 154

    Article  Google Scholar 

  26. Fobelets K, Li C, Coquillat D, Arcade P and Teppe F 2013 RSC Adv. 3 4434

    Article  CAS  Google Scholar 

  27. McSweeney W, Lotty O, Mogili N V V, Glynn C, Geaney H, Tanner D et al 2013 J. Appl. Phys. 114 034309

    Article  Google Scholar 

  28. Liu M-P, Li C-H, Du H-B and You X-Z 2012 Chem. Commun. 48 4950

    Article  CAS  Google Scholar 

  29. Ortaboy S, Alper J P, Rossi F, Bertoni G, Salviati G, Carraro C et al 2017 Energy Environ. Sci. 10 1505

    Article  CAS  Google Scholar 

  30. Ghosh S, Mathews T, Gupta B, Das A, Krishna N G and Kamruddin M 2017 Nano-Struct. Nano-Objects 10 42

    Article  CAS  Google Scholar 

  31. Wu D, Xu S, Li M, Zhang C, Zhu Y, Xu Y et al 2015 J. Mater. Chem. A 3 16695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to DAE, Government of India, for providing the financial support. We also thank P K Ajikumar, S Amirthapandian and K K Madapu for SEM, TEM and Raman measurements, respectively. We acknowledge UGC-DAE CSR Kalpakkam Node for the experimental support. RNV is grateful to Vinayaka Mission Research Foundation, Chennai 603 104, for the research support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Mathews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Lakshmanan, C., Viswanath, R.N. et al. Electrochemical studies on wafer-scale synthesized silicon nanowalls for supercapacitor application. Bull Mater Sci 43, 291 (2020). https://doi.org/10.1007/s12034-020-02272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02272-7

Keywords

Navigation