Skip to main content
Log in

Production of TiO2-deposited Diatoms and Their Applications for Photo-catalytic Degradation of Aqueous Pollutants

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biogenic TiO2 diatoms can be prepared by metabolic incorporation of TiO2 on the frustule surface of the diatoms. To utilize the photo-catalytic activity of biogenic TiO2 for practical applications, high production of TiO2-deposited diatoms is required. Here, we evaluated the growth rate and biogenic TiO2 production of several domestic diatom species. Among the tested diatoms, Caloneis schroederi (CS) showed high biomass production (4.01 g/L) in a two-stage cultivation system and proper exoskeletal rigidity for efficient production of biogenic TiO2. The dry weight of the TiO2-deposited CS frustules (biogenic CS-TiO2) was 4.52 g/L. Biogenic CS-TiO2 showed significant photo-catalytic degradation of Congo Red in water with an efficiency of 27.8%, which is higher than that of standard TiO2 (17.4%). In addition, chloroform could be removed from water through the photo-catalytic activity of biogenic CS-TiO2 (91%). Therefore, the biogenic CS-TiO2 developed in this study can be employed for the treatment of pollutant-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, D. Y., Y. Wang, J. Cai, J. F. Pan, X. G. Jiang, and Y. G. Jiang (2012) Bio-manufacturing technology based on diatom micro- and nanostructure. Chin. Sci. Bull. 57: 3836–3849.

    Article  CAS  Google Scholar 

  2. Dai, Z., J. Tong, and L. Ren (2006) Researches and developments of biomimetics in tribology. Chin. Sci. Bull. 51: 2681–2689.

    Article  CAS  Google Scholar 

  3. Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl. Microbiol. Biotechnol. 60: 624–632.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, K., C. A. Page, and C. D. Harvell (2009) The role of environment and microorganisms in diseases of corals: overview of DAO Special 5. Dis. Aquat. Organ. 87: 1–3.

    Article  PubMed  Google Scholar 

  5. Townley, H. E., A. R. Parker, and H. White-Cooper (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv. Funet. Mater. 18: 369–374.

    Article  CAS  Google Scholar 

  6. Losic, D., K. Short, J. G. Mitchell, R. Lal, and N. H. Voelcker (2007) AFM nanoindentations of diatom biosilica surfaces. Langmuir. 23: 5014–5021.

    Article  CAS  PubMed  Google Scholar 

  7. Losic, D., J. G. Mitchell, and N. H. Voelcker (2005) Complex gold nanostructures derived by templating from diatom frustules. Chem. Commun. (Camb). 2005: 4905–4907.

    Article  CAS  Google Scholar 

  8. Lewin, R. A. (1990) Skeletons on the coffee table. Nature. 346: 619–620.

    Article  Google Scholar 

  9. Hamm, C. E., R. Merkel, O. Springer, P. Jurkojc, C. Maier, K. Prechtel, and V. Smetacek (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature. 421: 841–843.

    Article  CAS  PubMed  Google Scholar 

  10. De Stefano, M., L. De Stefano, and R. Congestri (2009) Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattiees Mierostruet. 46: 64–68.

    Article  CAS  Google Scholar 

  11. Losic, D. (2006) Fabrication of gold nanostructures by templating from porous diatom frustules. New J. Chem. 30: 908–914.

    Article  CAS  Google Scholar 

  12. Bozarth, A., U. G. Maier, and S. Zauner (2009) Diatoms in biotechnology: modern tools and applications. Appl. Mierobiol. Bioteehnol. 82: 195–201.

    Article  CAS  Google Scholar 

  13. Losic, D., G. Rosengarten, J. G. Mitchell, and N. H. Voelcker (2006) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanoteehnol. 6: 982–989.

    Article  CAS  Google Scholar 

  14. De Stefano, L., I. Rea, I. Rendina, M. De Stefano, and L. Moretti (2007) Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express. 15: 18082–18088.

    Article  PubMed  Google Scholar 

  15. De Stefano, L., I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena (2005) Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 87: 233902.

    Article  CAS  Google Scholar 

  16. Fuhrmann, T., S. Landwehr, M. El Rharbi-Kucki, and M. Sumper (2004) Diatoms as living photonic crystals. Appl. Phys. B. 78: 257–260.

    Article  CAS  Google Scholar 

  17. Ki, M. R., J. K. Kim, S. H. Kim, T. K. M. Nguyen, K. H. Kim, and S. P. Pack (2020) Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J. Ind. Eng. Chem. 81: 367–374.

    Article  CAS  Google Scholar 

  18. Kim, J. K., M. A. A. Abdelhamid, and S. P. Pack (2019) Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports. Int. J. Biol. Maeromol. 135: 969–977.

    Article  CAS  Google Scholar 

  19. Abdelhamid, M. A. A., K. B. Yeo, M. R. Ki, and S. P. Pack (2019) Self-encapsulation and controlled release of recombinant proteins using novel silica-forming peptides as fusion linkers. Int. J. Biol. Macromol. 125: 1175–1183.

    Article  CAS  PubMed  Google Scholar 

  20. Ki, M. R., T. K. M. Nguyen, H. S. Jun, and S. P. Pack (2018) Biosilica-enveloped ferritin cage for more efficient drug deliveries. Process Biochem. 68: 182–189.

    Article  CAS  Google Scholar 

  21. Park, K. S., M. R. Ki, K. B. Yeo, J. H. Choi, and S. P. Pack (2017) Design of bio-inspired silica-encapsulated protein A for improved immunoprecipitation assays. Bioehem. Eng. J. 128: 12–18.

    Article  CAS  Google Scholar 

  22. Ryu, Y. H., K. B. Yeo, M. R. Ki, Y. J. Kim, and S. P. Pack (2016) Improved stability and reusability of endoglucanase from Clostridium thermocellum by a biosilica-based auto-encapsulation method. Biochem. Eng. J. 105: 144–149.

    Article  CAS  Google Scholar 

  23. Ki, M. R., K. B. Yeo, and S. P. Pack (2013) Surface immobilization of protein via biosilification catalyzed by silicatein fused to glutathione S-transferase (GST). Bioproeess Biosyst. Eng. 36: 643–648.

    Article  CAS  Google Scholar 

  24. Min, K. H., K. B. Yeo, M. R. Ki, S. H. Jun, and S. P. Pack (2020) Novel silica forming peptide, RSGH, from Equus caballus: Its unique biosilica formation under acidic conditions. Biochem. Eng. J. 153: 107389.

    Article  CAS  Google Scholar 

  25. Nguyen, T. K. M., M. R. Ki, C. S. Lee, and S. P. Pack (2019) Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates. J. Ind. Eng. Chem. 73: 198–204.

    Article  CAS  Google Scholar 

  26. Park, J. C., D. H. Kim, C. S. Kim, and J. H. Seo (2018) R5 peptide-based biosilicification using methyltrimethoxysilane. Biotechnol. Bioprocess Eng. 23: 11–15.

    Article  CAS  Google Scholar 

  27. Yeo, K. B., M. R. Ki, K. S. Park, S. P. Pack (2017) Novel silicaforming peptides derived from Ectocarpus siliculosus. Process Biochem. 58: 193–198.

    Article  CAS  Google Scholar 

  28. Min, K. H., R. G. Son, M. R. Ki, Y. S. Choi, and S. P. Pack (2016) High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development. Chemosphere. 143: 128–134.

    Article  CAS  PubMed  Google Scholar 

  29. Ki, M. R., E. K. Jang, and S. P. Pack (2014) Hypothetical cathepsin-like protein from Nematostella vectensis and its silicatein-like cathepsin mutant for biosilica production. Process Biochem. 49: 95–101.

    Article  CAS  Google Scholar 

  30. Zeng, H. C. (2006) Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 16: 649–662.

    Article  CAS  Google Scholar 

  31. Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano. 2: 2103–2112.

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh, T. B., S. Dhabal, and A. K. Datta (2003) On crystallite size dependence of phase stability of nanocrystalline TiO2. J. Appl. Phys. 94: 4577.

    Article  CAS  Google Scholar 

  33. Lazar, M. A., S. Varghese, and S. S. Nair (2012) Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts. 2: 572–601.

    Article  CAS  Google Scholar 

  34. Ilea, A., D. Timuş, N. B. Petrescu, O. Soriţău, B. A. Boşca, V. Mager, L. Barbu-Tudoran, A. M. Bǎbţan, R. S. Câmpian, and R. Barabás (2019) An in vitro study on the biocompatibility of titanium implants made by selective laser melting. Biotechnol. Bioprocess Eng. 24: 782–792.

    Article  CAS  Google Scholar 

  35. Marchand, P. J., A. V. Krishnamoorthy, G. I. Yayla, S. C. Esener, and U. Efron (1997) Optically augmented 3-D computer: System technology and architecture. J. Parallel. Distrib. Comput. 41: 20–35.

    Article  Google Scholar 

  36. Yablonovitch, E. (1993) Photonic band-gap structures. J. Opt. Soc. Am. B. 10: 283–295.

    Article  CAS  Google Scholar 

  37. Huh, P. and S. C. Kim (2012) Easy formation and dye-sensitized solar cell application of highly-ordered 3D titania arrays using photodynamic polymer. Electron Mater. Lett. 8: 131–134.

    Article  CAS  Google Scholar 

  38. Cole, K. E., A. N. Ortiz, M. A. Schoonen, and A. M. Valentine (2006) Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem. Mater. 18: 4592–4599.

    Article  CAS  Google Scholar 

  39. Cole, K. E. and A. M. Valentine (2007) Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules. 8: 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  40. Sewell, S. L. and D. W. Wright (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18: 3108–3113.

    Article  CAS  Google Scholar 

  41. Tahir, M. N., P. Théato, W. E. G. Müller, H. C. Schröder, A. Borejko, S. Faiß, A. Janshoff, J. Huthe, and W. Tremel (2005) Formation of layered titania and zirconia catalysed by surfacebound silicatein. Chem. Commun. 2005: 5533–5535.

    Article  CAS  Google Scholar 

  42. Dolatabadi, J. E. N. and M. de la Guardia (2011) Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trends Analyt. Chem. 30: 1538–1548.

    Article  CAS  Google Scholar 

  43. Schmid, A. M. M. and D. Schulz (1979) Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles. Protoplasma. 100: 267–288.

    Article  Google Scholar 

  44. Song, H., W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, and Y. Liu (2013) Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site. J. Climate. 26: 5467–5492.

    Article  Google Scholar 

  45. Silva-Aciares, F. R. and C. E. Riquelme (2008) Comparisons of the growth of six diatom species between two configurations of photobioreactors. Aquac. Eng. 38: 26–35.

    Article  Google Scholar 

  46. Shifu, C. and C. Gengyu (2006) The effect of different preparation conditions on the photocatalytic activity of TiO2·SiO2/beads. Surf. Coat. Technol. 200: 3637–3643.

    Article  CAS  Google Scholar 

  47. Kim, S. W., M. Kang, and S. J. Choung (2005) Preparation of a TiO2 film using a TEOS binder and its application to the photodegradation of benzene. J. Ind. Eng. Chem. 11: 416–424.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Pil Pack.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Min, K.H., Kanth, B.K. et al. Production of TiO2-deposited Diatoms and Their Applications for Photo-catalytic Degradation of Aqueous Pollutants. Biotechnol Bioproc E 25, 758–765 (2020). https://doi.org/10.1007/s12257-020-0019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0019-4

Keywords

Navigation