Skip to main content
Log in

Tradeoff Control of Multi-exposure Lithography for SU-8 Photochemical Reaction Channel Formation

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A method involving multi-exposure with low-power is presented to fabricate an SU-8 mold based on a digital micromirror device (DMD) maskless lithography with an LED source at a wavelength of 405 nm. The SU-8 mold is used for the fabrication of a PDMS concentration gradient generator (CGG). During a one-time exposure, it is easy to over-expose at the top and under-expose at the bottom of a thick SU-8, which then forms a T-shaped structure. This is more obvious for high-absorption coefficients such as 365 nm. We found that by taking advantage of the partially absorbed and partially transmissive characteristics of the 405-nm wavelength, multi-exposure can form an effective photochemical reaction channel in SU-8 and can solve the problem mentioned above. However, excessive exposure will cause the linewidth to increase, therefore, it is necessary to find a tradeoff for the number of multi-exposure times. For a 55-µm thick SU-8, the tradeoff threshold is found to be 25. Three types of SU-8 CGG molds were fabricated at this threshold. The results indicate that the actual profile of the SU-8 mold shows good agreement with the design profile without any T-shaped structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Fang, X., Chen, H., Xu, L., Jiang, X., Wu, W. & Kong, J. A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab Chip 12, 1495–1499 (2012).

    Article  CAS  Google Scholar 

  2. Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    Article  CAS  Google Scholar 

  3. Dittrich, P.S. & Manz, A.A. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discovery 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  4. Gao, S., Tung, W.T., Wong, D.S.H., Bian, L. & Zhang, A.P. Direct optical micropatterning of poly (dimethylsiloxane) for microfluidic devices. J. Micromech. Microeng. 28, 095011 (2018).

    Article  Google Scholar 

  5. Lin, Y. Numerical characterization of simple three-dimensional chaotic micromixers. Chem. Eng. J. 277 303–311 (2015).

    Article  CAS  Google Scholar 

  6. Chen, X., Li, T. & Hu, Z. A novel research on serpentine microchannels of passtive micromixers. Microsyst. Technol. 23 2649–2656 (2017).

    Article  CAS  Google Scholar 

  7. McDonald J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  8. Huang, B.B., Yin, M.J., Zhang, A.P. & Ye, X.S. On-chip microfabrication of thermally controllable PNIPAAm microvalves by using optical maskless stereolithography. Sens. Actuators A 247, 397–402 (2016).

    Article  CAS  Google Scholar 

  9. Wu, J., Guo, X., Zhang, A.P. & Tam, H.Y. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators. Opt. Express 23, 29708–29714 (2015).

    Article  Google Scholar 

  10. Yin, M.J., Yao, M., Gao, S., Zhang, A.P., Tam, H.Y. & Wai, P.K.A. Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors. Adv. Mater. 28, 1394–1399 (2016).

    Article  CAS  Google Scholar 

  11. Yin, M.J., Huang, B.B., Gao, S.R., Zhang, A.P. & Ye, X.S. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensive glucose detection. Biomed. Opt. Express 7, 2067–2077 (2016).

    Article  CAS  Google Scholar 

  12. Wang, J., Yao, M., Hu, C.Z., Zhang, A.P., Shen, Y. H., Tam H.Y. & Wai, P.K.A. Optofluidic tunable mode-locked fiber laser using a long-period grating integrated microfluidic chip. Opt. Lett. 42, 1117–1120 (2017).

    Article  Google Scholar 

  13. www.ti.com

  14. Yang, B., Zhou, J.Y., Chen, Q.M., Lei, L. & Wen, K.H. Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation. Opt. Express 26 28927–28937 (2018).

    Article  Google Scholar 

  15. Mack, C.A., Matsuzawa, T., Sekiguchi, A. & Minami, Y. Resist metrology for lithography simulation, part I: exposure parameter measurements. Proc. SPIE Metrology, Inspection, and Process Control for Microlithography X, 2725, 34–48 (1996).

    Article  CAS  Google Scholar 

  16. Xu, B.J., Jin, Q.H. & Zhao, J.L. Fabrication and application of multilayer SU-8 based micro dispensing array chip. Journal of functional materials and devices 12, 377–382 (2006).

    CAS  Google Scholar 

  17. Zhao, L., Zhang, B.Z., Duan, J.P. & Cui, J.L. The design and manufacture of micro cantilever based on thick photoresist. Science Technology and Engineering 15, 128–131 (2015).

    Google Scholar 

  18. Ghosh, S. & Ananthasuresh, G.K. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures. Sci. Rep. 6, 18428 (2016).

    Article  CAS  Google Scholar 

  19. Gou, M., Qu, X., Zhu, W., Xiang, M., Yang, J., Zhang, K., Wei, Y. & Chen, S. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat. Commun. 5, 3774 (2014).

    Article  CAS  Google Scholar 

  20. Hribar, K.C., Finlay, D., Ma, X., Qu, X., Ondeck, M.G., Chung, P.H., Zanella, F., Engler, A.J., Sheikh, F., Vuori, K. & Chen, S.C. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip, 15, 2412–2418 (2015).

    Article  CAS  Google Scholar 

  21. Zhang, A.P., Qu, X., Soman, P., Hribar, K.C., Lee, J. W., Chen, S. & He, S. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    Article  CAS  Google Scholar 

  22. Luo, N.N., Xu, G.Y., Zhang, Z.M. & Zhang, W.W. Reduction of buried microstructure diffraction in fabricating curved microstructure by multiple exposure method. Opt. Express, 26, 31085–31093 (2018).

    Article  CAS  Google Scholar 

  23. Ryoo, H., Kang, D.W. & Hahn, J.W. Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device. Microelectron. Eng. 88, 3145–3149 (2011).

    Article  CAS  Google Scholar 

  24. Sensu, Y., Sekiugehi, A., Morinad, S. & Hond, N. Porfile simulation of SU-8 thick film resist. Proc. SPIE, Advances in Resist Technology and Processing XXII 5753, 1170–1185 (2005).

    Article  CAS  Google Scholar 

  25. Leeds, A.R., Van Keuren, E.R., Dusrt, M.E., Schnelder, T.W., Currie, J.F. & Paranjape, M. Integration of microfluidic and microoptical elements using a single-mask Photolithographic step. Sens. Actuators, A 115, 571–580 (2004).

    Article  CAS  Google Scholar 

  26. Zhang, J.Y., Chen, D., Zhu, J., Li, J.H., Fang, H.B. & Yang, B. Process study of high-aspect-ratio ultrathick SU-8 microstructures, Journal of Functional materials and devices (in Chinese) 11, 251–254 (2005).

    CAS  Google Scholar 

  27. Yoshihisa, S., Atsushi, S. & Yoshiyuki, K. Profile simulation of SU-8 thick film resist. J. Photopolym. Sci. Technol. 18, 125–132 (2005).

    Article  Google Scholar 

  28. Dill, F.H., Hornberger, W.P., Hauge, P.S. & Shaw, J.M. Characterization of positive photoresist, IEEE. Trans. Electron Devices 22, 445–452 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Research and Development planning project in key areas of Guangdong Province (grant no. 2020B090924 001) and Guangzhou Science and Technology planning project (202002030210). The authors would like to thank the Analysis and Test center of GDUT for use of its LSCM facility and thank Editage [www.editage.cn] for English language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yun Zhou.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QM., Zhou, JY., Hu, YM. et al. Tradeoff Control of Multi-exposure Lithography for SU-8 Photochemical Reaction Channel Formation. BioChip J 14, 369–380 (2020). https://doi.org/10.1007/s13206-020-4405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4405-y

Keywords

Navigation