Skip to main content
Log in

BNIP3 as a Regulator of Cisplatin-Induced Apoptosis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

BNIP3 is a member of Bcl-2 protein family involved in regulation of various forms of cell death. However, its role in these processes remains unclear and varies depending on the type of cancer cells and environmental factors (pH, O2 level, etc.). Here, the role of BNIP3 in apoptosis regulation in lung adenocarcinoma cells was investigated. The suppressed expression of BNIP3 caused inhibition of oxygen consumption and stimulated production of the mitochondrial reactive oxygen species, suggesting the role of BNIP3 in induction of mitochondrial dysfunction and its potential involvement in regulation of cell death. Indeed, cytochrome c release in the cells with BNIP3 knockout and knockdown was higher than in the wild-type (WT) upon apoptosis stimulation by cisplatin. Moreover, suppression of BNIP3 expression led to the increase in the caspase-3 activity and, as a consequence, accumulation of the apoptotic marker – p89 fragment of poly(ADP-ribose)-polymerase (PARP) – as compared to WT cells. Analysis of the SubG1 population by flow cytometry confirmed the elevated level of apoptosis in the BNIP3 knockout cells. Pretreatment with the antioxidant Trolox did not affect cell death, indicating that it was independent on reactive oxygen species. These data show that BNIP3 is involved in maintaining normal functioning of mitochondria and, as a result, can regulate the mitochondrial pathway of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide-m-chlorophenylhydrazone

ETC:

electron-transport chain

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

mtROS:

mitochondrial reactive oxygen species

OCR:

oxygen consumption rate

PARP:

poly(ADP-ribose)-polymerase

siRNA:

small interfering RNA

WT:

wild-type

References

  1. Greulich, H. (2010) The genomics of lung adenocarcinoma: opportunities for targeted therapies, Genes Cancer, 1, 1200-1210, doi: https://doi.org/10.1177/1947601911407324.

    Article  CAS  PubMed Central  Google Scholar 

  2. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) BCL-2 family members and the mitochondria in apoptosis, Genes Dev., 13, 1899-1911, doi: https://doi.org/10.1101/gad.13.15.1899.

    Article  CAS  Google Scholar 

  3. Zhang, J., and Ney, P. A. (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy, Cell Death Differ., 16, 939-946, doi: https://doi.org/10.1038/cdd.2009.16.

    Article  CAS  PubMed Central  Google Scholar 

  4. Mazure N. M., and Pouysségur, J. (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia, Autophagy, 5, 868-869, doi: https://doi.org/10.4161/auto.9042.

    Article  Google Scholar 

  5. Ray, R., Chen, G., Vande Velde, C., Cizeau, J., Park, J. H., Reed, J. C., Gietz, R. D., and Greenberg, A. H. (2000) BNIP3 heterodimerizes with Bcl-2/Bcl-XL and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites, J. Biol. Chem., 275, 1439-1448, doi: https://doi.org/10.1074/jbc.275.2.1439.

    Article  CAS  Google Scholar 

  6. Lee, Y., Lee, H.-Y., Hanna, R. A., and Gustafsson, Å. B. (2011) Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes, Am. J. Physiol. Circ. Physiol., 301, H1924-H1931, doi: https://doi.org/10.1152/ajpheart.00368.2011.

    Article  CAS  Google Scholar 

  7. Hanna, R. A., Quinsay, M. N., Orogo, A. M., Giang, K., Rikka, S., and Gustafsson, Å. B. (2012) Microtubule-associated Protein 1 Light Chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy, J. Biol. Chem., 287, 19094-19104, doi: https://doi.org/10.1074/jbc.M111.322933.

    Article  CAS  PubMed Central  Google Scholar 

  8. Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H., and Harris, A. L. (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors, Cancer Res., 61, 6669-6673.

    CAS  Google Scholar 

  9. Chourasia, A. H., and Macleod, K. F. (2015) Tumor suppressor functions of BNIP3 and mitophagy, Autophagy, 11, 1937-1938, doi: https://doi.org/10.1080/15548627.2015.1085136.

    Article  CAS  PubMed Central  Google Scholar 

  10. Koop, E. A., van Laar, T., van Wichen, D. F., de Weger, R. A., van der Wall, E., and van Diest, P. J. (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features, BMC Cancer, 9, 175, doi: https://doi.org/10.1186/1471-2407-9-175.

    Article  CAS  PubMed Central  Google Scholar 

  11. Chourasia, A. H., Tracy, K., Frankenberger, C., Boland, M., Sharifi, M. N., et al. (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis, EMBO Rep., 16, 1145-1163, doi: https://doi.org/10.15252/embr.201540759.

    Article  CAS  PubMed Central  Google Scholar 

  12. Dasari, S., and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action, Eur. J. Pharmacol., 740, 364-378, doi: https://doi.org/10.1016/j.ejphar.2014.07.025.

    Article  CAS  Google Scholar 

  13. Matsushima, M., Fujiwara, T., Takahashi, E., Minaguchi, T., Eguchi, Y., Tsujimoto, Y., Suzumori, K., and Nakamura, Y. (1998) Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3, Genes Chromosomes Cancer, 21, 230-235, PMID: 9523198.

    Article  CAS  Google Scholar 

  14. Jiang, X., and Wang, X. (2004) Cytochrome c-mediated apoptosis, Annu. Rev. Biochem., 73, 87-106, doi: https://doi.org/10.1146/annurev.biochem.73.011303.073706.

    Article  CAS  Google Scholar 

  15. Cai, J., and Jones, D. P. (1999) Mitochondrial redox signaling during apoptosis, J. Bioenerg. Biomembr., 31, 327-334, doi: https://doi.org/10.1023/a:1005423818280.

    Article  CAS  Google Scholar 

  16. Marullo, R., Werner, E., Degtyareva, N., Moore, B., Altavilla, G., Ramalingam, S. S., and Doetsch, P. W. (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions, PLoS One, 8, e81162, doi: https://doi.org/10.1371/journal.pone.0081162.

    Article  PubMed Central  Google Scholar 

  17. Forrest, V. J., Kang, Y. H., McClain, D. E., Robinson, D. H., and Ramakrishnan, N. (1994) Oxidative stress-induced apoptosis prevented by Trolox, Free Radic. Biol. Med., 16, 675-684, doi: https://doi.org/10.1016/0891-5849(94)90182-1.

    Article  CAS  Google Scholar 

  18. Schwerdt, G., Freudinger, R., Schuster, C., Weber, F., Thews, O., and Gekle, M. (2005) Cisplatin-induced apoptosis is enhanced by hypoxia and by inhibition of mitochondria in renal collecting duct cells, Toxicol. Sci., 85, 735-742, doi: https://doi.org/10.1093/toxsci/kfi117.

    Article  CAS  Google Scholar 

  19. Vernucci, E., Tomino, C., Molinari, F., Limongi, D., Aventaggiato, M., Sansone, L., Tafani, M., and Russo, M. A. (2019) Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials, Oxid. Med. Cell Longev., 2019, 1-19, doi: https://doi.org/10.1155/2019/6387357.

    Article  CAS  Google Scholar 

  20. Qiao, A., Wang, K., Yuan, Y., Guan, Y., Ren, X., Li, L., Chen, X., Li, F., Chen, A. F., Zhou, J., Yang, J.-M., and Cheng, Y. (2016) Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia, Oncotarget, 7, doi: https://doi.org/10.18632/oncotarget.9717.

    Google Scholar 

  21. Yao, N., Wang, C., Hu, N., Li, Y., Liu, M., et al. (2019) Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog, Cell Death Dis., 10, 232, doi: https://doi.org/10.1038/s41419-019-1470-z.

    Article  CAS  PubMed Central  Google Scholar 

  22. Tol, M. J., Ottenhoff, R., van Eijk, M., Zelcer, N., Aten, J., et al. (2016) A PPARγ-Bnip3 axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity, Diabetes, 65, 2591-2605, doi: https://doi.org/10.2337/db16-0243.

    Article  CAS  PubMed Central  Google Scholar 

  23. Koepke, S. J., Watkins, J. J., and Minteer, S. D. (2016) Understanding the role of mitochondrial health in the mechanism of mitochondrial bioelectrocatalysis, J. Electrochem. Soc., 163, H292-H298, doi: https://doi.org/10.1149/2.0681605jes.

    Article  CAS  Google Scholar 

  24. Cocetta, V., Ragazzi, E., and Montopoli, M. (2019) Mitochondrial Involvement in cisplatin resistance, Int. J. Mol. Sci., 20, 3384, doi: https://doi.org/10.3390/ijms20143384.

    Article  CAS  PubMed Central  Google Scholar 

  25. Zhu, Y., Li, M., Wang, X., Jin, H., Liu, S., Xu, J., and Chen, Q. (2012) Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release, Cell Res., 22, 127-141, doi: https://doi.org/10.1038/cr.2011.82.

    Article  CAS  Google Scholar 

  26. Kleih, M., Böpple, K., Dong, M., Gaißler, A., Heine, S., Olayioye, M. A., Aulitzky, W. E., and Essmann, F. (2019) Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells, Cell Death Dis., 10, 851, doi: https://doi.org/10.1038/s41419-019-2081-4.

    Article  CAS  PubMed Central  Google Scholar 

  27. Fleury, C., Mignotte, B., and Vayssière, J.-L. (2002) Mitochondrial reactive oxygen species in cell death signaling, Biochimie, 84, 131-141, doi: https://doi.org/10.1016/S0300-9084(02)01369-X.

    Article  CAS  Google Scholar 

  28. Sp, N., Kang, D. Y., Jo, E. S., Rugamba, A., Kim, W. S., et al. (2020) Tannic acid promotes TRAIL-induced extrinsic apoptosis by regulating mitochondrial ROS in human embryonic carcinoma cells, Cells, 9, 282, doi: https://doi.org/10.3390/cells9020282.

    Article  CAS  PubMed Central  Google Scholar 

  29. Monticone, M., Taherian, R., Stigliani, S., Carra, E., Monteghirfo, S., et al. (2014) NAC, Tiron and Trolox impair survival of cell cultures containing glioblastoma tumorigenic initiating cells by inhibition of cell cycle progression, PLoS One, 9, e90085, doi: https://doi.org/10.1371/journal.pone.0090085.

    Article  CAS  PubMed Central  Google Scholar 

  30. Diaz, Z., Colombo, M., Mann, K. K., Su, H., Smith, K. N., et al. (2005) Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines, Blood, 105, 1237-1245, doi: https://doi.org/10.1182/blood-2004-05-1772.

    Article  CAS  Google Scholar 

  31. Zheng, J., Payne, K., Taggart, J. E., Jiang, H., Lind, S. E., and Ding, W.-Q. (2012) Trolox enhances curcumin’s cytotoxicity through induction of oxidative stress, Cell. Physiol. Biochem., 29, 353-360, doi: https://doi.org/10.1159/000338490.

    Article  CAS  PubMed Central  Google Scholar 

  32. Abdrakhmanov, A., Kulikov, A. V., Luchkina, E. A., Zhivotovsky, B., and Gogvadze, V. (2019) Involvement of mitophagy in cisplatin-induced cell death regulation, Biol. Chem., 400, 161-170, doi: https://doi.org/10.1515/hsz-2018-0210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Gelina Kopeina for providing valuable recommendations and feedback throughout this project.

Funding

This research was financially supported by the Russian Science Foundation (project no. 19-15-00125) and by the Russian Foundation for Basic Research (projects nos. 20-015-00105, 20-315-90019, and 19-015-00332), as well as by the Swedish (project no. 190345) and Stockholm (project no. 181301) Cancer Societies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zhivotovsky.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, A.S., Denisenko, T.V., Yapryntseva, M.A. et al. BNIP3 as a Regulator of Cisplatin-Induced Apoptosis. Biochemistry Moscow 85, 1245–1253 (2020). https://doi.org/10.1134/S0006297920100120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920100120

Keywords

Navigation