Skip to main content
Log in

Replicative Senescence and Expression of Autophagy Genes in Mesenchymal Stromal Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell senescence leads to a number of changes in the properties of mesenchymal stromal cells (MSCs). In particular, the number of damaged structures is increased producing negative effect on intracellular processes. Elimination of the damaged molecules and organelles occurs via autophagy that can be important in the context of aging. Cultivation under low oxygen level can be used as an approach for enhancement of MSC therapeutic properties and “slowing down” cell senescence. The goal of this work was to study some morphological and functional characteristics and expression of autophagy-associated genes during replicative senescence of MSCs under different oxygen concentration. The study revealed changes in the regulation of autophagy at the transcriptional level. Upregulation of the expression of autophagosome membrane growth genes ATG9A and ULK1, of the autophagosome maturation genes CTSD, CLN3, GAA, and GABARAPL1, of the autophagy regulation genes TP53, TGFB1, BCL2L1, FADD, and HTT was shown. These changes were accompanied by downregulation of IGF1 and TGM2 expression. Increase of the lysosomal compartment volume was observed in the senescent MSCs that also indicated increase of their degradation activity. The number of lysosomes was decreased following prolonged cultivation under low oxygen concentration (5%). The replicative senescence of MSCs under conditions of different oxygen levels led to the similar modifications in the expression of the autophagy-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

FSC-A:

forward scatter area

MSCs:

mesenchymal stromal/stem cells

ROS:

reactive oxygen species

SA-β-Gal:

senescence-associated β-galactosidase

SSC-A:

side scatter area

References

  1. Chan, R. W. S., Schwab, K. E., and Gargett, C. E. (2004) Clonogenicity of human endometrial epithelial and stromal cells, Biol. Reprod., 70, 1738-1750, doi: https://doi.org/10.1095/biolreprod.103.024109.

    Article  CAS  PubMed  Google Scholar 

  2. Trounson, A., and McDonald, C. (2015) Stem cell therapies in clinical trials: progress and challenges, Cell Stem Cell, 17, 11-22, doi: https://doi.org/10.1016/j.stem.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  3. Caplan, A. I. (2009) Why are MSCs therapeutic? New data: new insight, J. Pathol., 217, 318-324, doi: https://doi.org/10.1002/path.2469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hodgkinson, C. P., Bareja, A., Gomez, J. A., and Dzau, V. J. (2016) Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology, Circ. Res., 118, 95-107, doi: https://doi.org/10.1161/CIRCRESAHA.115.305373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gornostaeva, A., Andreeva, E., and Buravkova, L. (2016) Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro, Cytotechnology, 68, 565-577, doi: https://doi.org/10.1007/s10616-015-9906-5.

    Article  CAS  PubMed  Google Scholar 

  6. Lunyak, V. V., Amaro-Ortiz, A., and Gaur, M. (2017) Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective, Front. Genet., 8, 220-240, doi: https://doi.org/10.3389/fgene.2017.00220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turinetto, V., Vitale, E., and Giachino, C. (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy, Int. J. Mol. Sci., 17, 1164, doi: https://doi.org/10.3390/ijms17071164.

    Article  CAS  PubMed Central  Google Scholar 

  8. Li, Y., Wu, Q., Wang, Y., Li, L., Bu, H., and Bao, J. (2017) Senescence of mesenchymal stem cells, Int. J. Mol. Med., 39, 775-782, doi: https://doi.org/10.3892/ijmm.2017.2912.

    Article  CAS  PubMed  Google Scholar 

  9. Ratushnyy, A., Ezdakova, M., and Buravkova, L. (2020) Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis, Int. J. Mol. Sci., 21, 1802-1817, doi: https://doi.org/10.3390/ijms21051802.

    Article  CAS  PubMed Central  Google Scholar 

  10. Morgunova, G. V., Klebanov, A. A., and Khokhlov, A. N. (2016) Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction, Moscow Univ. Biol. Sci. Bull., 71, 207-211, doi: https://doi.org/10.3103/S0096392516040088.

    Article  Google Scholar 

  11. Ma, Y., Qi, M., An, Y., Zhang, L., Yang, R., Doro, D. H., Liu, W., and Jin, Y. (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging, Aging Cell, 17, 12709, doi: https://doi.org/10.1111/acel.12709.

    Article  CAS  Google Scholar 

  12. Rastaldo, R., Vitale, E., and Giachino, C. (2020) Dual role of autophagy in regulation of mesenchymal stem cell senescence, Front. Cell Dev. Biol., 8, 276-282, doi: https://doi.org/10.3389/fcell.2020.00276.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang, T. C., Hsu, M. F., and Wu, K. K. (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy, PLoS One, 10, e0126537, doi: https://doi.org/10.1371/journal.pone.0126537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, Y., Hu, C. J., Zhuo, R. H., Lei, Y. S., Han, N. N., and He, L. (2014) Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture, Mol. Med. Rep., 10, 3003-3008, doi: https://doi.org/10.3892/mmr.2014.2624.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, F., Lee, J. Y., Wei, H., Tanabe, O., Engel, J. D., Morrison, S. J., and Guan, J.-L. (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells, Blood, 116, 4806-4814, doi: https://doi.org/10.1182/blood-2010-06-288589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou, X., Lee, M. R., Huang, X., Messina-Graham, S., and Broxmeyer, H. E. (2014) SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress, Stem Cells, 32, 1183-1194, doi: https://doi.org/10.1002/stem.1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., et al. (2016) Autophagy maintains stemness by preventing senescence, Nature, 529, 37-42, doi: https://doi.org/10.1038/nature16187.

    Article  CAS  PubMed  Google Scholar 

  18. Herberg, S., Shi, X., Johnson, M. H., Hamrick, M. W., Isales, C. M., and Hill, W. D. (2013) Stromal cell-derived factor-1beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells, PLoS One, 8, e58207, doi: https://doi.org/10.1371/journal.pone.0058207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu, J., Li, Z., Wu, X., Chen, Y., Yan, M., Ge, X., and Yu, J. (2019) iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy, Stem Cell Res. Ther., 10, 222-235, doi: https://doi.org/10.1186/s13287-019-1345-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ceccariglia, S., Cargnoni, A., Silini, A. R., and Parolini, O. (2020) Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells, Autophagy, 16, 28-37, doi: https://doi.org/10.1080/15548627.2019.1630223.

    Article  CAS  PubMed  Google Scholar 

  21. Kang, C., Xu, Q., Martin, T. D., Li, M. Z., Demaria, M., et al. (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4, Science, 349, 5612, doi: https://doi.org/10.1126/science.aaa5612.

    Article  CAS  Google Scholar 

  22. Kang, C., and Elledge, S. J. (2016) How autophagy both activates and inhibits cellular senescence, Autophagy, 12, 898-899, doi: https://doi.org/10.1080/15548627.2015.1121361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratushnyy, A., Lobanova, M., and Buravkova, L. B. (2017) Expansion of adipose tissue-derived stromal cells at “physiologic” hypoxia attenuates replicative senescence, Cell Biochem. Funct., 35, 232-243, doi: https://doi.org/10.1002/cbf.3267.

    Article  CAS  PubMed  Google Scholar 

  24. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng., 7, 211-228, doi: https://doi.org/10.1089/107632701300062859.

    Article  CAS  PubMed  Google Scholar 

  25. Buravkova, L. B., Grinakovskaya, O. S., Andreeva, E. P., Zhambalova, A. P., and Kozionova, M. P. (2009) Characteristics of mesenchymal stromal cells from human lipoaspirate cultivated at decreased oxygenation, Tsitologiya, 51, 5-11, doi: https://doi.org/10.1134/S1990519X09010039.

    Article  CAS  Google Scholar 

  26. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement, Cytotherapy, 8, 315-317, doi: https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  27. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 25, 402-408, doi: https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  28. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. USA, 92, 9363-9367, doi: https://doi.org/10.1073/pnas.92.20.9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, doi: https://doi.org/10.1038/nrm2233.

    Article  CAS  PubMed  Google Scholar 

  30. Fehrer, C., Brunauer, R., Laschober, G., Unterluggauer, H., Reitinger, S., et al. (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan, Aging Cell, 6, 745-757, doi: https://doi.org/10.1111/j.1474-9726.2007.00336.x.

    Article  CAS  PubMed  Google Scholar 

  31. Mathew, S. A., Rajendran, S., Gupta, P. K., and Bhonde, R. (2013) Modulation of physical environment makes placental mesenchymal stromal cells suitable for therapy, Cell Biol. Int., 37, 1197-204, doi: https://doi.org/10.1002/cbin.10154.

    Article  CAS  PubMed  Google Scholar 

  32. Valorani, M. G., Montelatici, E., Germani, A., Biddle, A., D’Alessandro, D., et al. (2012) Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials, Cell Prolif., 45, 225-238, doi: https://doi.org/10.1111/j.1365-2184.2012.00817.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pilgaard, L., Lund, P., Duroux, M., Fink, T., Ulrich-Vinther, M., Søballe, K., and Zachar, V. (2009) Effect of oxygen concentration, culture format and donor variability on in vitro chondrogenesis of human adipose tissue-derived stem cells, Regen. Med., 4, 539-548, doi: https://doi.org/10.2217/rme.09.28.

    Article  CAS  PubMed  Google Scholar 

  34. Choi, J. R., Pingguan-Murphy, B., Wan Abas, W. A., Yong, K. W., Poon, C. T., et al. (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis, PLoS One, 10, e0115034, doi: https://doi.org/10.1371/journal.pone.0115034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohyeldin, A., Garzón-Muvdi, T., Quiñones-Hinojosa, A. (2010) Oxygen in stem cell biology: a critical component of the stem cell niche, Cell Stem Cell, 7, 150-161, doi: https://doi.org/10.1016/j.stem.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

  36. Reeg, S., and Grune, T. (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid. Redox. Signal., 23, 239-255, doi: https://doi.org/10.1089/ars.2014.6062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurz, D. J., Decary, S., Hong, Y., and Erusalimsky, J. D. (2000) Senescence-associated (Beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells, J. Cell Sci., 113, 3613-3622, PMID: 11017877.

    CAS  PubMed  Google Scholar 

  38. Gómez-Sintes, R., Ledesma, M. D., and Boya, P. (2016) Lysosomal cell death mechanisms in aging, Ageing Res. Rev., 32, 150-168, doi: https://doi.org/10.1016/j.arr.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  39. Bertolo, A., Baur, M., Guerrero, J., Pötzel, T., and Stoyanov, J. (2019) Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells, Sci. Rep., 9, 2074-2088, doi: https://doi.org/10.1038/s41598-019-38546-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunk, U. T., and Terman, A. (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function, Free Radic. Biol. Med., 33, 611-619, doi: https://doi.org/10.1016/s0891-5849(02)00959-0.

    Article  CAS  PubMed  Google Scholar 

  41. Rodier, F., and Campisi, J. (2011) Four faces of cellular senescence, J. Cell Biol., 192, 547-556, doi: https://doi.org/10.1083/jcb.201009094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Legzdina, D., Romanauska, A., Nikulshin, S., Kozlovska, T., and Berzins, U. (2016) Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells, Int. J. Stem Cells, 9, 124-136, doi: https://doi.org/10.15283/ijsc.2016.9.1.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ratushnyy, A. Y., Rudimova, Y. V., and Buravkova, L. B. (2019) Alteration of hypoxia-associated gene expression in replicatively senescent mesenchymal stromal cells under physiological oxygen level, Biochemistry (Moscow), 84, 263-271, doi: https://doi.org/10.1134/S0006297919030088.

    Article  CAS  Google Scholar 

  44. Korovilaa, I., Hugoa, M., Castroa, J. P., Webera, D., Höhna, A., Grunea, T., and Junga, T. (2017) Proteostasis, oxidative stress and aging, Redox Biol., 13, 550-567, doi: https://doi.org/10.1016/j.redox.2017.07.008.

    Article  CAS  Google Scholar 

  45. Yang, M., Wen, T., Chen, H., Deng, J., Yang, C., and Zhang, Z. (2018) Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy, Stem Cell Res. Ther., 9, 284-301, doi: https://doi.org/10.1186/s13287-018-1028-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovaleva, O. V., Shitova, M. S., and Zborovskaya, I. B. (2014) Autophagy: the cell death or a manner of survival? Klinich. Onkogematologiya, 7, 103-113.

    Google Scholar 

  47. Zhang, M., Du, Y., Lu, R., Shu, Y., Zhao, W., et al. (2016) Cholesterol retards senescence in bone marrow mesenchymal stem cells by modulating autophagy and ROS/P53/P21Cip1/Waf1 pathway, Oxid. Med. Cell. Longev., 2016, 7524308, doi: https://doi.org/10.1155/2016/7524308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghavami, S., Cunnington, R. H., Gupta, S., Yeganeh, B., Filomeno, K. L., et al. (2015) Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts, Cell Death Dis., 6, 1696, doi: https://doi.org/10.1038/cddis.2015.36.

    Article  CAS  Google Scholar 

  49. Martin, D. D. O., Ladha, S., Ehrnhoefer, D. E., and Hayden, M. R. (2015) Autophagy in Huntington disease and huntingtin in autophagy, Trends. Neurosci., 38, 26-35, doi: https://doi.org/10.1016/j.tins.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, F., Yang, Y., and Xing, D. (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis, FEBS J., 278, 403-413, doi: https://doi.org/10.1111/j.1742-4658.2010.07965.x.

    Article  CAS  PubMed  Google Scholar 

  51. Thorburn, J., Moore, F., Rao, A., Barclay, W. W., Thomas, L. R., et al. (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells, Mol. Biol. Cell, 16, 1189-1199, doi: https://doi.org/10.1091/mbc.e04-10-0906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Judith, D., Jefferies, H. B. J., Boeing, S., Frith, D., Snijders, A. P., and Tooze, S. A. (2019) ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ, J. Cell Biol., 218, 1634-1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chandrachud, U., Walker, M. W., Simas, A. M., Heetveld, S., Petcherski, A., et al. (2015) Unbiased cell-based screening in a neuronal cell model of batten disease highlights an interaction between Ca2+ homeostasis, autophagy, and CLN3 protein function, J. Biol. Chem., 290, 14361-14380, doi: https://doi.org/10.1074/jbc.M114.621706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyer-Guittaut, M., Poillet, L., Liang, Q., Bôle-Richard, E., Ouyang, X., et al. (2014) Affiliations expand the role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells, Autophagy, 10, 986-1003, doi: https://doi.org/10.4161/auto.28390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hah, Y. S., Noh, H. S., Ha, J. H., Ahn, J. S., Hahm, J. R., Cho, H. Y., and Kim, D. R. (2012) Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells, Cancer Lett., 323, 208-214, doi: https://doi.org/10.1016/j.canlet.2012.04.012.

    Article  CAS  PubMed  Google Scholar 

  56. D’Eletto, M., Farrace, M. G., Falasca, L., Reali, V., Oliverio, S., et al. (2009) Transglutaminase 2 is involved in autophagosome maturation, Autophagy, 5, 1145-1154.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (project no. 19-015-00150-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Ratushnyy.

Ethics declarations

The authors declare no conflicts in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratushnyy, A.Y., Rudimova, Y.V. & Buravkova, L.B. Replicative Senescence and Expression of Autophagy Genes in Mesenchymal Stromal Cells. Biochemistry Moscow 85, 1169–1177 (2020). https://doi.org/10.1134/S0006297920100053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920100053

Keywords

Navigation