Skip to main content
Log in

Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Strictly regulated balance between the formation and utilization of reactive oxygen species (ROS) is the basis of normal functioning of organisms. ROS play an important role in the regulation of many metabolic processes; however, excessive content of ROS leads to the development of various disorders, including oncological diseases, as a result of ROS-induced mutations in DNA. In tumors, high levels of oxygen radicals promote cell proliferation and metastasis. On the other hand, high content of ROS can trigger cell death, a phenomenon used in the antitumor therapy. Water- and lipid-soluble antioxidants, as well as antioxidant enzyme systems, can inhibit ROS generation; however, they should be used with caution. Antioxidants can suppress ROS-dependent cell proliferation and metastasis, but at the same time, they may inhibit the death of tumor cells if the antitumor therapeutic agents stimulate oxidative stress. The data on the role of antioxidants in the death of tumor cells and on the effects of antioxidants taken as dietary supplements during antitumor therapy, are contradictory. This review focuses on the mechanisms by which antioxidants can affect tumor and healthy cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

GPx:

glutathione peroxidase

HIF:

hypoxia-inducible factor

MAO:

monoamine oxidase

MPT:

mitochondrial permeability transition

ROS:

reactive oxygen species

NF-κB:

nuclear factor κB

NOX:

NADPH oxidase

PCD:

programmed cell death

SOD:

superoxide dismutase

TNF:

tumor necrosis factor

References

  1. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer, Cell, 100, 57-70, doi: https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  Google Scholar 

  2. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., et al. (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018, Cell Death Differ., 25, 486-541, doi: https://doi.org/10.1038/s41418-017-0012-4.

    Article  Google Scholar 

  3. Halliwell, B. (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition, Mutat. Res., 443, 37-52, doi: https://doi.org/10.1016/s1383-5742(99)00009-5.

    Article  CAS  Google Scholar 

  4. Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N., and Starkov, A. A. (2015) Mitochondrial ROS metabolism: 10 years later, Biochemistry (Moscow), 80, 517-531, doi: https://doi.org/10.1134/S0006297915050028.

    Article  CAS  Google Scholar 

  5. Gaweska, H., and Fitzpatrick, P. F. (2011) Structures and meanism of the monoamine oxidase family, Biomol. Concepts, 2, 365-377, doi: https://doi.org/10.1515/BMC.2011.030.

    Article  CAS  Google Scholar 

  6. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., et al. (2018) Oxidative stress, aging and diseases, Clin. Interv. Aging, 13, 757-772, doi: https://doi.org/10.2147/CIA.S158513.

    Article  CAS  Google Scholar 

  7. Schroder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., et al. (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase, Circ. Res., 110, 1217-1225, doi: https://doi.org/10.1161/CIRCRESAHA.112.267054.

    Article  CAS  Google Scholar 

  8. Meng, X. M., Ren, G. L., Gao, L., Yang, Q., Li, H. D., et al. (2018) NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation, Lab. Invest., 98, 63-78, doi: https://doi.org/10.1038/labinvest.2017.120.

    Article  CAS  Google Scholar 

  9. Haag-Liautard, C., Coffey, N., Houle, D., Lynch, M., Charlesworth, B., and Keightley, P. D. (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster, PLoS Biol., 6, e204, doi: https://doi.org/10.1371/journal.pbio.0060204.

    Article  CAS  Google Scholar 

  10. Elchuri, S., Oberley, T. D., Qi, W., Eisenstein, R. S., Jackson Roberts, L., et al. (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life, Oncogene, 24, 367-380, doi: https://doi.org/10.1038/sj.onc.1208207.

    Article  CAS  Google Scholar 

  11. Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., et al. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nat. Genet., 11, 376-381, doi: https://doi.org/10.1038/ng1295-376.

    Article  CAS  Google Scholar 

  12. Thannickal, V. J., and Fanburg, B. L. (1995) Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1, J. Biol. Chem., 270, 30334-30338, doi: https://doi.org/10.1074/jbc.270.51.30334.

    Article  CAS  Google Scholar 

  13. Meier, B., Radeke, H. H., Selle, S., Younes, M., Sies, H., Resch, K., and Habermehl, G. G. (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha, Biochem. J., 263, 539-545, doi: https://doi.org/10.1042/bj2630539.

    Article  CAS  Google Scholar 

  14. Redza-Dutordoir, M., and Averill-Bates, D. A. (2016) Activation of apoptosis signalling pathways by reactive oxygen species, Biochim. Biophys. Acta, 1863, 2977-2992, doi: https://doi.org/10.1016/j.bbamcr.2016.09.012.

    Article  CAS  Google Scholar 

  15. Kim, S. Y., Park, C., Jang, H. J., Kim, B. O., Bae, H. W., et al. (2019) Antibacterial strategies inspired by the oxidative stress and response networks, J. Microbiol., 57, 203-212, doi: https://doi.org/10.1007/s12275-019-8711-9.

    Article  Google Scholar 

  16. Wu, M. Y., Yiang, G. T., Liao, W. T., Tsai, A. P., Cheng, Y. L., et al. (2018) Current mechanistic concepts in ischemia and reperfusion injury, Cell. Physiol. Biochem., 46, 1650-1667, doi: https://doi.org/10.1159/000489241.

    Article  CAS  Google Scholar 

  17. Rodic, S., and Vincent, M. D. (2018) Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype, Int. J. Cancer, 142, 440-448, doi: https://doi.org/10.1002/ijc.31069.

    Article  CAS  Google Scholar 

  18. Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts, Science, 275, 1649-1652, doi: https://doi.org/10.1126/science.275.5306.1649.

    Article  CAS  Google Scholar 

  19. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M., and Wahl, G. M. (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability, Mol. Cell, 9, 1031-1044, doi: https://doi.org/10.1016/s1097-2765(02)00520-8.

    Article  CAS  Google Scholar 

  20. Hole, P. S., Pearn, L., Tonks, A. J., James, P. E., Burnett, A. K., Darley, R. L., and Tonks, A. (2010) Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells, Blood, 115, 1238-1246, doi: https://doi.org/10.1182/blood-2009-06-222869.

    Article  CAS  Google Scholar 

  21. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 3, 721-732, doi: https://doi.org/10.1038/nrc1187.

    Article  CAS  Google Scholar 

  22. Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., and Schumacker, P. T. (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing, J. Biol. Chem., 275, 25130-25138, doi: https://doi.org/10.1074/jbc.M001914200.

    Article  CAS  Google Scholar 

  23. Aggarwal, V., Tuli, H. S., Varol, A., Thakral, F., Yerer, M. B., et al. (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements, Biomolecules, 9, doi: https://doi.org/10.3390/biom9110735.

    Article  Google Scholar 

  24. Kanbagli, O., Ozdemirler, G., Bulut, T., Yamaner, S., Aykac-Toker, G., and Uysal, M. (2000) Mitochondrial lipid peroxides and antioxidant enzymes in colorectal adenocarcinoma tissues, Jpn. J. Cancer Res., 91, 1258-1263, doi: https://doi.org/10.1111/j.1349-7006.2000.tb00912.x.

    Article  CAS  Google Scholar 

  25. Cobbs, C. S., Levi, D. S., Aldape, K., and Israel, M. A. (1996) Manganese superoxide dismutase expression in human central nervous system tumors, Cancer Res., 56, 3192-3195.

    CAS  Google Scholar 

  26. Wang, M., Kirk, J. S., Venkataraman, S., Domann, F. E., Zhang, H. J., et al. (2005) Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, Oncogene, 24, 8154-8166, doi: https://doi.org/10.1038/sj.onc.1208986.

    Article  CAS  Google Scholar 

  27. Nakata, T., Suzuki, K., Fujii, J., Ishikawa, M., Tatsumi, H., et al. (1992) High expression of manganese superoxide dismutase in 7,12-dimethylbenz[a]anthracene-induced ovarian cancer and increased serum levels in the tumor-bearing rats, Carcinogenesis, 13, 1941-1943, doi: https://doi.org/10.1093/carcin/13.10.1941.

    Article  CAS  Google Scholar 

  28. Nunes, S. C., and Serpa, J. (2018) Glutathione in varian cancer: a double-edged sword, Int. J. Mol. Sci., 19, doi: https://doi.org/10.3390/ijms19071882.

    Google Scholar 

  29. Chan, J. M., Darke, A. K., Penney, K. L., Tangen, C. M., et al. (2016) Selenium- or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in select, Cancer Epidemiol. Biomarkers Prev., 25, 1050-1058, doi: https://doi.org/10.1158/1055-9965.EPI-16-0104.

    Article  CAS  Google Scholar 

  30. Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer, PLoS Med., 3, e420, doi: https://doi.org/10.1371/journal.pmed.0030420.

    Article  CAS  Google Scholar 

  31. Oberley, L. W. (2001) Anticancer therapy by overexpression of superoxide dismutase, Antioxid. Redox Signal., 3, 461-472, doi: https://doi.org/10.1089/15230860152409095.

    Article  CAS  Google Scholar 

  32. Wang, J. Y., Wang, X., Wang, X. J., Zheng, B. Z., Wang, Y., Wang, X., and Liang, B. (2018) Curcumin inhibits the growth via Wnt/beta-catenin pathway in non-small-cell lung cancer cells, Eur. Rev. Med. Pharmacol. Sci., 22, 7492-7499, doi: https://doi.org/10.26355/eurrev_201811_16290.

    Article  Google Scholar 

  33. Isakov, N. (2018) Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression, Semin. Cancer Biol., 48, 36-52, doi: https://doi.org/10.1016/j.semcancer.2017.04.012.

    Article  CAS  Google Scholar 

  34. Knock, G. A., and Ward, J. P. (2011) Redox regulation of protein kinases as a modulator of vascular function, Antioxid. Redox Signal., 15, 1531-1547, doi: https://doi.org/10.1089/ars.2010.3614.

    Article  CAS  Google Scholar 

  35. Natarajan, K., Gottipati, K. R., Berhane, K., Samten, B., Pendurthi, U., and Boggaram, V. (2016) Proteases and oxidant stress control organic dust induction of inflammatory gene expression in lung epithelial cells, Respir. Res., 17, 137, doi: https://doi.org/10.1186/s12931-016-0455-z.

    Article  CAS  Google Scholar 

  36. Sagun, K. C., Cárcamo, J. M., and Golde, D. W. (2006) Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC, Mutat. Res., 593, 64-79, doi: https://doi.org/10.1016/j.mrfmmm.2005.06.015.

    Article  CAS  Google Scholar 

  37. Gordan, J. D., Thompson, C. B., and Simon, M. C. (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation, Cancer Cell, 12, 108-113, doi: https://doi.org/10.1016/j.ccr.2007.07.006.

    Article  CAS  Google Scholar 

  38. Dolcet, X., Llobet, D., Pallares, J., and Matias-Guiu, X. (2005) NF-κB in development and progression of human cancer, Virchows Arch., 446, 475-482, doi: https://doi.org/10.1007/s00428-005-1264-9.

    Article  CAS  Google Scholar 

  39. Johnson, J., Thijssen, B., McDermott, U., Garnett, M., Wessels, L. F., and Bernards, R. (2016) Targeting the RB-E2F pathway in breast cancer, Oncogene, 35, 4829-4835, doi: https://doi.org/10.1038/onc.2016.32.

    Article  CAS  Google Scholar 

  40. Nevins, J. R. (2001) The Rb/E2F pathway and cancer, Hum. Mol. Genet., 10, 699-703, doi: https://doi.org/10.1093/hmg/10.7.699.

    Article  CAS  Google Scholar 

  41. De Jager, S. M., Maughan, S., Dewitte, W., Scofield, S., and Murray, J. A. (2005) The developmental context of cell-cycle control in plants, Semin. Cell. Dev. Biol., 16, 385-396, doi: https://doi.org/10.1016/j.semcdb.2005.02.004.

    Article  CAS  Google Scholar 

  42. Bakshi, S., Bergman, M., Dovrat, S., and Grossman, S. (2004) Unique natural antioxidants (NAOs) and derived purified components inhibit cell cycle progression by downregulation of ppRb and E2F in human PC3 prostate cancer cells, FEBS Lett., 573, 31-37, doi: https://doi.org/10.1016/j.febslet.2004.06.101.

    Article  CAS  Google Scholar 

  43. Henry, D., Brumaire, S., and Hu, X. (2019) Involvement of pRb-E2F pathway in green tea extract-induced growth inhibition of human myeloid leukemia cells, Leuk. Res., 77, 34-41, doi: https://doi.org/10.1016/j.leukres.2018.12.014.

    Article  CAS  Google Scholar 

  44. Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., and Bergo, M. O. (2014) Antioxidants accelerate lung cancer progression in mice, Sci. Transl. Med., 6, 221ra215, doi: https://doi.org/10.1126/scitranslmed.3007653.

    Article  CAS  Google Scholar 

  45. Wiel, C., Le Gal, K., Ibrahim, M. X., Jahangir, C. A., Kashif, M., et al. (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis, Cell, 178, 330-345.e322, doi: https://doi.org/10.1016/j.cell.2019.06.005.

    Article  CAS  Google Scholar 

  46. Lignitto, L., LeBoeuf, S. E., Homer, H., Jiang, S., Askenazi, M., et al. (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1, Cell, 178, 316-329.e18, doi: https://doi.org/10.1016/j.cell.2019.06.003.

    Article  CAS  Google Scholar 

  47. Kumari, S., Badana, A. K., Murali Mohan, G., Shailender, G., and Malla, R. (2018) Reactive oxygen species: a key constituent in cancer survival, Biomark. Insights, 13, 1177271918755391, doi: https://doi.org/10.1177/1177271918755391.

    Article  Google Scholar 

  48. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol., 18, 165-173, doi: https://doi.org/10.1016/j.tcb.2008.01.006.

    Article  CAS  Google Scholar 

  49. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane, Mol. Cell. Biol., 20, 929-935, doi: https://doi.org/10.1128/mcb.20.3.929-935.2000.

    Article  CAS  Google Scholar 

  50. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis, Biochim. Biophys. Acta, 1757, 639-647, doi: https://doi.org/10.1016/j.bbabio.2006.03.016.

    Article  CAS  Google Scholar 

  51. Hunter, D. R., and Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms, Arch. Biochem. Biophys., 195, 453-459, doi: https://doi.org/10.1016/0003-9861(79)90371-0.

    Article  CAS  Google Scholar 

  52. McStay, G. P., Clarke, S. J., and Halestrap, A. P. (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore, Biochem. J., 367, 541-548, doi: https://doi.org/10.1042/BJ20011672.

    Article  CAS  Google Scholar 

  53. Neuzil, J., Wang, X. F., Dong, L. F., Low, P., and Ralph, S. J. (2006) Molecular mechanism of “mitocan”-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins, FEBS Lett., 580, 5125-5129, doi: https://doi.org/10.1016/j.febslet.2006.05.072.

    Article  CAS  Google Scholar 

  54. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2002) Cytochrome c release from mitochondria proceeds by a two-step process, Proc. Natl. Acad. Sci. USA, 99, 1259-1263, doi: https://doi.org/10.1073/pnas.241655498.

    Article  CAS  Google Scholar 

  55. Kagan, V. E., Bayir, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., et al. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Radic. Biol. Med., 46, 1439-1453, doi: https://doi.org/10.1016/j.freeradbiomed.2009.03.004.

    Article  CAS  Google Scholar 

  56. Cai, J., and Jones, D. P. (1999) Mitochondrial redox signaling during apoptosis, J. Bioenerg. Biomembr., 31, 327-334, doi: https://doi.org/10.1023/a:1005423818280.

    Article  CAS  Google Scholar 

  57. Cabeca, T. K., de Mello Abreu, A., Andrette, R., de Souza Lino, V., Morale, M. G., et al. (2019) HPV-mediated resistance to TNF and TRAIL is characterized by global alterations in apoptosis regulatory factors, dysregulation of death receptors, and induction of ROS/RNS, Int. J. Mol. Sci., 20, doi: https://doi.org/10.3390/ijms20010198.

    Article  Google Scholar 

  58. Choi, K., Ryu, S. W., Song, S., Choi, H., Kang, S. W., and Choi, C. (2010) Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis, Cell. Death Differ., 17, 833-845, doi: https://doi.org/10.1038/cdd.2009.154.

    Article  CAS  Google Scholar 

  59. Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., et al. (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis, Cell, 122, 221-233, doi: https://doi.org/10.1016/j.cell.2005.05.011.

    Article  CAS  Google Scholar 

  60. Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A., and Feng, Z. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proc. Natl. Acad. Sci. USA, 107, 7455-7460, doi: https://doi.org/10.1073/pnas.1001006107.

    Article  Google Scholar 

  61. Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., and Chumakov, P. M. (2005) The antioxidant function of the p53 tumor suppressor, Nat. Med., 11, 1306-1313, doi: https://doi.org/10.1038/nm1320.

    Article  CAS  Google Scholar 

  62. Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A., and Finkel, T. (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis, Proc. Natl. Acad. Sci. USA, 93, 11848-11852, doi: https://doi.org/10.1073/pnas.93.21.11848.

    Article  CAS  Google Scholar 

  63. Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., et al. (2006) p53 regulates mitochondrial respiration, Science, 312, 1650-1653, doi: https://doi.org/10.1126/science.1126863.

    Article  CAS  Google Scholar 

  64. Hampton, M. B., and Orrenius, S. (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis, FEBS Lett., 414, 552-556, doi: https://doi.org/10.1016/s0014-5793(97)01068-5.

    Article  CAS  Google Scholar 

  65. Akram, S., Teong, H. F., Fliegel, L., Pervaiz, S., and Clement, M. V. (2006) Reactive oxygen species-mediated regulation of the Na+-H+ exchanger 1 gene expression connects intracellular redox status with cells’ sensitivity to death triggers, Cell Death Differ., 13, 628-641, doi: https://doi.org/10.1038/sj.cdd.4401775.

    Article  CAS  Google Scholar 

  66. Pohl, S. O., Agostino, M., Dharmarajan, A., and Pervaiz, S. (2018) Cross talk between cellular redox state and the antiapoptotic protein Bcl-2, Antioxid. Redox Signal., 29, 1215-1236, doi: https://doi.org/10.1089/ars.2017.7414.

    Article  CAS  Google Scholar 

  67. Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., et al. (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology and disease, Cell, 171, 273-285, doi: https://doi.org/10.1016/j.cell.2017.09.021.

    Article  CAS  Google Scholar 

  68. Kinowaki, Y., Kurata, M., Ishibashi, S., Ikeda, M., Tatsuzawa, A., et al. (2018) Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma, Lab. Invest., 98, 609-619, doi: https://doi.org/10.1038/s41374-017-0008-1.

    Article  CAS  Google Scholar 

  69. Lubos, E., Loscalzo, J., and Handy, D. E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities, Antioxid. Redox Signal., 15, 1957-1997, doi: https://doi.org/10.1089/ars.2010.3586.

    Article  CAS  Google Scholar 

  70. Canli, O., Alankus, Y. B., Grootjans, S., Vegi, N., Hultner, L., et al. (2016) Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors, Blood, 127, 139-148, doi: https://doi.org/10.1182/blood-2015-06-654194.

    Article  CAS  Google Scholar 

  71. Li, L., Tan, J., Miao, Y., Lei, P., and Zhang, Q. (2015) ROS and autophagy: interactions and molecular regulatory mechanisms, Cell Mol. Neurobiol., 35, 615-621, doi: https://doi.org/10.1007/s10571-015-0166-x.

    Article  CAS  Google Scholar 

  72. Abdrakhmanov, A., Kulikov, A. V., Luchkina, E. A., Zhivotovsky, B., and Gogvadze, V. (2019) Involvement of mitophagy in cisplatin-induced cell death regulation, Biol. Chem., 400, 161-170, doi: https://doi.org/10.1515/hsz-2018-0210.

    Article  CAS  Google Scholar 

  73. Raza, M. H., Siraj, S., Arshad, A., Waheed, U., Aldakheel, F., Alduraywish, S., and Arshad, M. (2017) ROS-modulated therapeutic approaches in cancer treatment, J. Cancer Res. Clin. Oncol., 143, 1789-1809, doi: https://doi.org/10.1007/s00432-017-2464-9.

    Article  CAS  Google Scholar 

  74. Cho, H. D., Lee, J. H., Moon, K. D., Park, K. H., Lee, M. K., and Seo, K. I. (2018) Auriculasin-induced ROS causes prostate cancer cell death via induction of apoptosis, Food Chem. Toxicol., 111, 660-669, doi: https://doi.org/10.1016/j.fct.2017.12.007.

    Article  CAS  Google Scholar 

  75. Wu, Q., Deng, J., Fan, D., Duan, Z., Zhu, C., Fu, R., and Wang, S. (2018) Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells, Biochem. Pharmacol., 148, 64-74, doi: https://doi.org/10.1016/j.bcp.2017.12.004.

    Article  CAS  Google Scholar 

  76. Nicco, C., and Batteux, F. (2017) ROS modulator molecules with therapeutic potential in cancers treatments, Molecules, 23, doi: https://doi.org/10.3390/molecules23010084.

    Google Scholar 

  77. Biasutto, L., Dong, L. F., Zoratti, M., and Neuzil, J. (2010) Mitochondrially targeted anti-cancer agents, Mitochondrion, 10, 670-681, doi: https://doi.org/10.1016/j.mito.2010.06.004.

    Article  CAS  Google Scholar 

  78. Kulikov, A. V., Vdovin, A. S., Zhivotovsky, B., and Gogvadze, V. (2014) Targeting mitochondria by alpha-tocopheryl succinate overcomes hypoxia-mediated tumor cell resistance to treatment, Cell. Mol. Life Sci., 71, 2325-2333, doi: https://doi.org/10.1007/s00018-013-1489-8.

    Article  CAS  Google Scholar 

  79. Kruspig, B., Nilchian, A., Bejarano, I., Orrenius, S., Zhivotovsky, B., and Gogvadze, V. (2012) Targeting mitochondria by alpha-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression, Cell. Mol. Life Sci., 69, 2091-2099, doi: https://doi.org/10.1007/s00018-012-0918-4.

    Article  CAS  Google Scholar 

  80. Ito, H., and Matsui, H. (2016) Mitochondrial reactive oxygen species and photodynamic therapy, Laser Ther., 25, 193-199, doi: https://doi.org/10.5978/islsm.16-OR-15.

    Article  Google Scholar 

  81. Ubezio, P., and Civoli, F. (1994) Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells, Free Radic. Biol. Med., 16, 509-516, doi: https://doi.org/10.1016/0891-5849(94)90129-5.

    Article  CAS  Google Scholar 

  82. Lawenda, B. D., Kelly, K. M., Ladas, E. J., Sagar, S. M., Vickers, A., and Blumberg, J. B. (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J. Natl. Cancer Inst., 100, 773-783, doi: https://doi.org/10.1093/jnci/djn148.

    Article  CAS  Google Scholar 

  83. Isuzugawa, K., Inoue, M., and Ogihara, Y. (2001) Ca2+-dependent caspase activation by gallic acid derivatives, Biol. Pharm. Bull., 24, 844-847, doi: https://doi.org/10.1248/bpb.24.844.

    Article  CAS  Google Scholar 

  84. Motterlini, R., Foresti, R., Bassi, R., and Green, C. J. (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress, Free Radic. Biol. Med., 28, 1303-1312, doi: https://doi.org/10.1016/s0891-5849(00)00294-x.

    Article  CAS  Google Scholar 

  85. Moghtaderi, H., Sepehri, H., Delphi, L., and Attari, F. (2018) Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231, Bioimpacts, 8, 185-194, doi: https://doi.org/10.15171/bi.2018.21.

    Article  CAS  Google Scholar 

  86. Kuo, M. L., Huang, T. S., and Lin, J. K. (1996) Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells, Biochim. Biophys. Acta, 1317, 95-100, doi: https://doi.org/10.1016/s0925-4439(96)00032-4.

    Article  CAS  Google Scholar 

  87. Sant, D. W., Mustafi, S., Gustafson, C. B., Chen, J., Slingerland, J. M., and Wang, G. (2018) Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression, Sci. Rep., 8, 5306, doi: https://doi.org/10.1038/s41598-018-23714-7.

    Article  CAS  Google Scholar 

  88. Valter, K., Chen, L., Kruspig, B., Maximchik, P., Cui, H., Zhivotovsky, B., and Gogvadze, V. (2017) Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs, Biochim. Biophys. Acta Mol. Cell. Res., 1864, 498-506, doi: https://doi.org/10.1016/j.bbamcr.2016.12.016.

    Article  CAS  Google Scholar 

  89. Renu, K., Abilash, V. G., Tirupathi Pichiah, P. B., and Arunachalam, S. (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy – an update, Eur. J. Pharmacol., 818, 241-253, doi: https://doi.org/10.1016/j.ejphar.2017.10.043.

    Article  CAS  Google Scholar 

  90. Wang, S., Konorev, E. A., Kotamraju, S., Joseph, J., Kalivendi, S., and Kalyanaraman, B. (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways, J. Biol. Chem., 279, 25535-25543, doi: https://doi.org/10.1074/jbc.M400944200.

    Article  CAS  Google Scholar 

  91. Vijay, K., Sowmya, P. R., Arathi, B. P., Shilpa, S., Shwetha, H. J., Raju, M., Baskaran, V., and Lakshminarayana, R. (2018) Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells, Food Chem. Toxicol., 118, 675-690, doi: https://doi.org/10.1016/j.fct.2018.06.027.

    Article  CAS  Google Scholar 

  92. D’Andrea, G. M. (2005) Use of antioxidants during chemotherapy and radiotherapy should be avoided, CA Cancer J. Clin., 55, 319-321, doi: https://doi.org/10.3322/canjclin.55.5.319.

    Article  Google Scholar 

  93. Sakamoto, K., and Sakka, M. (1973) Reduced effect of irradiation on normal and malignant cells irradiated in vivo in mice pretreated with vitamin E, Br. J. Radiol., 46, 538-540, doi: https://doi.org/10.1259/0007-1285-46-547-538.

    Article  CAS  Google Scholar 

  94. Witenberg, B., Kletter, Y., Kalir, H. H., Raviv, Z., Fenig, E., et al. (1999) Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells, Radiat. Res., 152, 468-478.

    Article  CAS  Google Scholar 

  95. Jung, A. Y., Cai, X., Thoene, K., Obi, N., Jaskulski, S., et al. (2019) Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy, Am. J. Clin. Nutr., 109, 69-78, doi: https://doi.org/10.1093/ajcn/nqy223.

    Article  Google Scholar 

  96. Prasad, K. N., Kumar, B., Yan, X. D., Hanson, A. J., and Cole, W. C. (2003) Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: a review, J. Am. Coll. Nutr., 22, 108-117, doi: https://doi.org/10.1080/07315724.2003.10719283.

    Article  CAS  Google Scholar 

  97. Alexander, M. S., Wilkes, J. G., Schroeder, S. R., Buettner, G. R., Wagner, B. A., et al. (2018) Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer, Cancer Res., 78, 6838-6851, doi: https://doi.org/10.1158/0008-5472.CAN-18-1680.

    Article  CAS  Google Scholar 

  98. Kennedy, M., Bruninga, K., Mutlu, E. A., Losurdo, J., Choudhary, S., and Keshavarzian, A. (2001) Successful and sustained treatment of chronic radiation proctitis with antioxidant vitamins E and C, Am. J. Gastroenterol., 96, 1080-1084, doi: https://doi.org/10.1111/j.1572-0241.2001.03742.x.

    Article  CAS  Google Scholar 

  99. Moss, R. W. (2007) Do antioxidants interfere with radiation therapy for cancer? Integr. Cancer Ther., 6, 281-292, doi: https://doi.org/10.1177/1534735407305655.

    Article  CAS  Google Scholar 

  100. Delanian, S., Balla-Mekias, S., and Lefaix, J. L. (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol, J. Clin. Oncol., 17, 3283-3290, doi: https://doi.org/10.1200/JCO.1999.17.10.3283.

    Article  CAS  Google Scholar 

  101. Jaakkola, K., Lahteenmaki, P., Laakso, J., Harju, E., Tykka, H., and Mahlberg, K. (1992) Treatment with antioxidant and other nutrients in combination with chemotherapy and irradiation in patients with small-cell lung cancer, Anticancer Res., 12, 599-606.

    CAS  Google Scholar 

  102. Umegaki, K., Aoki, S., and Esashi, T. (1995) Whole body X-ray irradiation to mice decreases ascorbic acid concentration in bone marrow: comparison between ascorbic acid and vitamin E, Free Radic. Biol. Med., 19, 493-497, doi: https://doi.org/10.1016/0891-5849(95)00033-t.

    Article  CAS  Google Scholar 

  103. Lenton, K. J., and Greenstock, C. L. (1999) Ability of human plasma to protect against ionising radiation is inversely correlated with age, Mech. Ageing Dev., 107, 15-20, doi: https://doi.org/10.1016/s0047-6374(98)00128-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Prof. B. D. Zhivotovsky for help in working on the manuscript, valuable comments, and suggestions. We apologize to those authors whose publications could not be cited due to the limited size of our review.

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00122), Russian Foundation for Basic Research (project no. 20-015-00105), Swedish Cancer Foundation (project no. 190345), and Stockholm Cancer Foundation (project no. 181301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gogvadze.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostrikova, S.M., Grinev, A.B. & Gogvadze, V.G. Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy. Biochemistry Moscow 85, 1254–1266 (2020). https://doi.org/10.1134/S0006297920100132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920100132

Keywords

Navigation