Skip to main content
Log in

Mathematical Modeling Reveals the Importance of the DED Filament Composition in the Effects of Small Molecules Targeting Caspase-8/c-FLIPL Heterodimer

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Procaspase-8 activation at the death-inducing signaling complex (DISC) triggers extrinsic apoptotic pathway. Procaspase-8 activation takes place in the death effector domain (DED) filaments and is regulated by c-FLIP proteins, in particular, by the long isoform c-FLIPL. Recently, the first-in-class chemical probe targeting the caspase-8/c-FLIPL heterodimer was reported. This rationally designed small molecule, FLIPin, enhances caspase-8 activity after initial heterodimer processing. Here, we used a kinetic mathematical model to gain an insight into the mechanisms of FLIPin action in a complex with DISC, in particular, to unravel the effects of FLIPin at different stoichiometry and composition of the DED filament. Analysis of this model has identified the optimal c-FLIPL to procaspase-8 ratios in different cellular landscapes favoring the activity of FLIPin. We predicted that the activity FLIPin is regulated via different mechanisms upon c-FLIPL downregulation or upregulation. Our study demonstrates that a combination of mathematical modeling with system pharmacology allows development of more efficient therapeutic approaches and prediction of optimal treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

DED:

death effector domain

DISC:

death-inducing signaling complex

DR:

death receptor

FLIPin:

FLIP inhibitor

References

  1. Krammer, P. H., Arnold, R., and Lavrik, I. N. (2007) Life and death in peripheral T cells, Nat. Rev. Immunol., 7, 532-542.

    Article  CAS  Google Scholar 

  2. Lavrik, I. N., and Krammer, P. H. (2012) Regulation of CD95/Fas signaling at the DISC, Cell Death Differ., 19, 36-41.

    Article  CAS  Google Scholar 

  3. Zamaraev, A. V., Kopeina, G. S., Zhivotovsky, B., and Lavrik, I. N. (2015) Cell death controlling complexes and their potential therapeutic role, Cell. Mol. Life Sci., 72, 505-517.

    Article  CAS  Google Scholar 

  4. Dickens, L. S., Boyd, R. S., Jukes-Jones, R., Hughes, M. A., Robinson, G. L., et al. (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death, Mol. Cell, 47, 291-305.

    Article  CAS  Google Scholar 

  5. Schleich, K., Warnken, U., Fricker, N., Ozturk, S., Richter, P., et al. (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model, Mol. Cell, 47, 306-319.

    Article  CAS  Google Scholar 

  6. Fu, T. M., Li, Y., Lu, A., Li, Z., Vajjhala, P. R., et al. (2016) Cryo-EM structure of caspase-8 tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex, Mol. Cell, 64, 236-250.

    Article  CAS  Google Scholar 

  7. Hughes, M. A., Harper, N., Butterworth, M., Cain, K., Cohen, G. M., and MacFarlane, M. (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival, Mol. Cell, 35, 265-279.

    Article  CAS  Google Scholar 

  8. Yu, J. W., Jeffrey, P. D., and Shi, Y. (2009) Mechanism of procaspase-8 activation by c-FLIPL, Proc. Natl. Acad. Sci. USA, 106, 8169-8174.

    Article  CAS  Google Scholar 

  9. Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., Briand, C., and Grutter, M. G. (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex, J. Biol. Chem., 277, 45162-45171.

    Article  CAS  Google Scholar 

  10. Kallenberger, S. M., Beaudouin, J., Claus, J., Fischer, C., Sorger, P. K., Legewie, S., and Eils, R. (2014) Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis, Sci. Signal., 7, ra23.

    Article  Google Scholar 

  11. Golks, A., Brenner, D., Schmitz, I., Watzl, C., Krueger, A., Krammer, P. H., and Lavrik, I. N. (2006) The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation, Cell Death Differ., 13, 489-498.

    Article  CAS  Google Scholar 

  12. Hoffmann, J. C., Pappa, A., Krammer, P. H., and Lavrik, I. N. (2009) A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation, Mol. Cell Biol., 29, 4431-4440.

    Article  CAS  Google Scholar 

  13. Lavrik, I., Krueger, A., Schmitz, I., Baumann, S., Weyd, H., Krammer, P. H., and Kirchhoff, S. (2003) The active caspase-8 heterotetramer is formed at the CD95 DISC, Cell Death Differ., 10, 144-145.

    Article  CAS  Google Scholar 

  14. Ivanisenko, N. V., and Lavrik, I. N. (2019) Mechanisms of procaspase-8 activation in the extrinsic programmed cell death pathway, Mol. Biol. (Mosk.), 53, 830-837.

    Article  CAS  Google Scholar 

  15. Ozturk, S., Schleich, K., and Lavrik, I. N. (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions, Exp. Cell Res., 318, 1324-1331.

    Article  CAS  Google Scholar 

  16. Golks, A., Brenner, D., Fritsch, C., Krammer, P. H., and Lavrik, I. N. (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis, J. Biol. Chem., 280, 14507-14513.

    Article  CAS  Google Scholar 

  17. Fricker, N., Beaudouin, J., Richter, P., Eils, R., Krammer, P. H., and Lavrik, I. N. (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL, J. Cell Biol., 190, 377-389.

    Article  CAS  Google Scholar 

  18. Hillert, L. K., Ivanisenko, N. V., Espe, J., Konig, C., Ivanisenko, V. A., Kahne, T., and Lavrik, I. N. (2020) Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly, Oncogene, 39, 1756-1772.

    Article  CAS  Google Scholar 

  19. Ueffing, N., Keil, E., Freund, C., Kuhne, R., Schulze-Osthoff, K., and Schmitz, I. (2008) Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment, Cell Death Differ., 15, 773-782.

    Article  CAS  Google Scholar 

  20. Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P., and Salvesen, G. S. (2004) Activation of caspases-8 and -10 by FLIP(L), Biochem. J., 382, 651-657.

    Article  CAS  Google Scholar 

  21. Pop, C., Oberst, A., Drag, M., Van Raam, B. J., Riedl, S. J., Green, D. R., and Salvesen, G. S. (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity, Biochem. J., 433, 447-457.

    Article  CAS  Google Scholar 

  22. Hughes, M. A., Powley, I. R., Jukes-Jones, R., Horn, S., Feoktistova, M., et al. (2016) Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate, Mol. Cell, 61, 834-849.

    Article  CAS  Google Scholar 

  23. Hillert, L. K., Ivanisenko, N. V., Busse, D., Espe, J., Konig, C., et al. (2020) Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer, Cell Death Differ., 27, 2117-2130.

    Article  CAS  Google Scholar 

  24. Spencer, S. L., and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells, Cell, 144, 926-939.

    Article  CAS  Google Scholar 

  25. Flusberg, D. A., and Sorger, P. K. (2015) Surviving apoptosis: life-death signaling in single cells, Trends Cell Biol., 25, 446-458.

    Article  CAS  Google Scholar 

  26. Bentele, M., Lavrik, I., Ulrich, M., Stosser, S., Heermann, D. W., Kalthoff, H., Krammer, P. H., and Eils, R. (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis, J. Cell Biol., 166, 839-851.

    Article  CAS  Google Scholar 

  27. Lavrik, I. N. (2014) Systems biology of death receptor networks: live and let die, Cell Death Dis., 5, e1259.

    Article  CAS  Google Scholar 

  28. Schleich, K., and Lavrik, I. N. (2013) Mathematical modeling of apoptosis, Cell Commun. Signal., 11, 44.

    Article  Google Scholar 

  29. Neumann, L., Pforr, C., Beaudouin, J., Pappa, A., Fricker, N., Krammer, P. H., Lavrik, I. N., and Eils, R. (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells, Mol. Syst. Biol., 6, 352.

    Article  Google Scholar 

  30. Buchbinder, J. H., Pischel, D., Sundmacher, K., Flassig, R. J., and Lavrik, I. N. (2018) Quantitative single cell analysis uncovers the life/death decision in CD95 network, PLoS Comput. Biol., 14, e1006368.

    Article  Google Scholar 

  31. Warnken, U., Schleich, K., Schnolzer, M., and Lavrik, I. (2013) Quantification of high-molecular weight protein platforms by AQUA mass spectrometry as exemplified for the CD95 Death-Inducing Signaling Complex (DISC), Cells, 2, 476-495.

    Article  CAS  Google Scholar 

  32. Schleich, K., Buchbinder, J. H., Pietkiewicz, S., Kahne, T., Warnken, U., et al. (2016) Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain, Cell Death Differ, 23, 681-694.

    Article  CAS  Google Scholar 

  33. Fulda, S. (2013) Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer, Expert Opin. Ther. Targets, 17, 195-201.

    Article  CAS  Google Scholar 

  34. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis, Nature, 459, 428-432.

    Article  CAS  Google Scholar 

  35. Aldridge, B. B., Gaudet, S., Lauffenburger, D. A., and Sorger, P. K. (2011) Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis, Mol. Syst. Biol., 7, 553.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 19-54-45015, 18-04-00207) and by the Russian State Budget Project (AAAA-A17-117092070032-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Lavrik.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanisenko, N.V., Lavrik, I.N. Mathematical Modeling Reveals the Importance of the DED Filament Composition in the Effects of Small Molecules Targeting Caspase-8/c-FLIPL Heterodimer. Biochemistry Moscow 85, 1134–1144 (2020). https://doi.org/10.1134/S0006297920100028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920100028

Keywords

Navigation