Skip to main content
Log in

Nutrient Deprivation Promotes MCL-1 Degradation in an Autophagy-Independent Manner

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The antiapoptotic protein Mcl-1, which is an attractive target for cancer treatment, is degraded under nutrient deprivation conditions in different types of cancer. This process sensitizes cancer cells to chemotherapy. It has been found that nutrient deprivation leads to suppression of Mcl-1 synthesis; however, the mechanisms of Mcl-1 degradation under such conditions remain to be elucidated. In this study, we have investigated the contribution of autophagy and proteasomal degradation to the regulation of the level of Mcl-1 protein under nutrient deprivation conditions. We found that these circumstances cause a decrease in the level of Mcl-1 in cancer cells in a macroautophagy-independent manner via proteasomal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

Atg proteins:

proteins encoded by autophagy-related genes

Bcl-2:

B-cell leukemia/lymphoma-2 protein

ECL:

enhanced chemiluminescent substrate

ERK:

extracellular signal-regulated kinase

FACS:

fluorescence activated cell sorting

FITC:

fluorescein isothiocyanate

GAPDH:

glyceraldehyde-3-phosphate-dehydrogenase

HBSS:

Hank’s Balanced Salt Solution

MAPK:

mitogen-activated protein kinase

Mcl-1:

myeloid cell leukemia-1 protein

mTORC1:

mammalian target of rapamycin complex 1

ND:

nutrient deprivation

PARP:

poly (ADP-ribose)-polymerase

PCD:

programmed cell death

PI:

propidium iodide

PI3K:

phosphatidylinositol 3-kinase

PBS:

phosphate buffered saline

ROS:

reactive oxygen species

SD:

serum deprivation

Ub:

ubiquitin

USP9X:

ubiquitin-specific peptidase 9, X-linked

References

  1. Jin, Z., and El-Deiry, W. S. (2005) Overview of cell death signaling pathways, Cancer Biol. Ther., 4, 139-163, doi: https://doi.org/10.4161/cbt.4.2.1508.

    Article  CAS  Google Scholar 

  2. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, doi: https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  3. Rogers, S., Wells, R., and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis, Science, 234, 364-368, doi: https://doi.org/10.1126/science.2876518.

    Article  CAS  Google Scholar 

  4. Kale, J., Osterlund, E. J., and Andrews, D. W. (2018) BCL-2 family proteins: changing partners in the dance towards death, Cell Death Differ., 25, 65-80, doi: https://doi.org/10.1038/cdd.2017.186.

    Article  CAS  Google Scholar 

  5. Senichkin, V. V., Streletskaia, A. Y., Zhivotovsky, B., and Kopeina, G. S. (2019) Molecular comprehension of Mcl-1: from gene structure to cancer therapy, Trends Cell Biol., 29, 549-562, doi: https://doi.org/10.1016/j.tcb.2019.03.004.

    Article  CAS  Google Scholar 

  6. Senichkin, V. V., Streletskaia, A. Y., Gorbunova, A. S., Zhivotovsky, B., and Kopeina, G. S. (2020) Saga of Mcl-1: regulation from transcription to degradation, Cell Death Differ., 27, 405-419, doi: https://doi.org/10.1038/s41418-019-0486-3.

    Article  Google Scholar 

  7. Pervushin, N. V., Senichkin, V. V., Zhivotovsky, B., and Kopeina, G. S. (2020) Mcl-1 as a “barrier” in cancer treatment: can we target it now? Int. Rev. Cell Mol. Biol., 351, 23-55, doi: https://doi.org/10.1016/bs.ircmb.2020.01.002.

    Article  Google Scholar 

  8. Senichkin, V. V., Kopeina, G. S., Prokhorova, E. A., Zamaraev, A. V., Lavrik, I. N., and Zhivotovsky, B. (2018) Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin, Biochim. Biophys. Acta Gen. Subj., 1862, 557-566, doi: https://doi.org/10.1016/j.bbagen.2017.11.021.

    Article  CAS  Google Scholar 

  9. Meynet, O., Zunino, B., Happo, L., Pradelli, L. A., Chiche, J., et al. (2013) Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice, Blood, 122, 2402-2411, doi: https://doi.org/10.1182/blood-2013-01-478651.

    Article  CAS  Google Scholar 

  10. Bhat, M., Yanagiya, A., Graber, T., Razumilava, N., Bronk, S., et al. (2017) Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells, Oncotarget, 8, 50542-50556, doi: https://doi.org/10.18632/oncotarget.10671.

    Article  Google Scholar 

  11. Mizushima, N. (2007) Autophagy: process and function, Genes Dev., 21, 2861-2873, doi: https://doi.org/10.1101/gad.1599207.

    Article  CAS  Google Scholar 

  12. Mijaljica, D., Prescott, M., and Devenish, R. J. (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum, Autophagy, 7, 673-682, doi: https://doi.org/10.4161/auto.7.7.14733.

    Article  CAS  Google Scholar 

  13. Klionsky, D. J., Baehrecke, E. H., Brumell, J. H., Chu, C. T., Codogno, P., et al. (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd Edn.), Autophagy, 7, 1273-1294, doi: https://doi.org/10.4161/auto.7.11.17661.

    Article  Google Scholar 

  14. Cuervo, A. M., and Wong, E. (2014) Chaperone-mediated autophagy: roles in disease and aging, Cell Res., 24, 92-104, doi: https://doi.org/10.1038/cr.2013.153.

    Article  CAS  Google Scholar 

  15. Levin, V. A., Panchabhai, S. C., Shen, L., Kornblau, S. M., Qiu, Y., and Baggerly, K. A. (2010) Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines, J. Proteome Res., 9, 179-191, doi: https://doi.org/10.1021/pr900392b.

    Article  CAS  Google Scholar 

  16. Pirkmajer, S., and Chibalin, A. V. (2011) Serum starvation: caveat emptor, Am. J. Physiol. Cell Physiol., 301, 272-279, doi: https://doi.org/10.1152/ajpcell.00091.2011.

    Article  CAS  Google Scholar 

  17. Green, D. R., Galluzzi, L., and Kroemer, G. (2014) Cell biology. Metabolic control of cell death, Science, 345, 1250256, doi: https://doi.org/10.1126/science.1250256.

    Article  CAS  Google Scholar 

  18. Mejlvang, J., Olsvik, H., Svenning, S., Bruun, J. A., Abudu, Y. P., et al. (2018) Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy, J. Cell Biol., 217, 3640-3655, doi: https://doi.org/10.1083/jcb.201711002.

    Article  CAS  Google Scholar 

  19. Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., et al. (2007) Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1, EMBO J., 26, 2527-2539, doi: https://doi.org/10.1038/sj.emboj.7601689.

    Article  CAS  Google Scholar 

  20. Elgendy, M., Ciro, M., Abdel-Aziz, A. K., Belmonte, G., Zuffo, R. D., et al. (2014) Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner, Nat. Commun., 5, 5637, doi: https://doi.org/10.1038/ncomms6637.

    Article  CAS  Google Scholar 

  21. Maiuri, M. C., Criollo, A., Tasdemir, E., Vicencio, J. M., Tajeddine, N., Hickman, J. A., Geneste, O., and Kroemer, G. (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L), Autophagy, 3, 374-376, doi: https://doi.org/10.4161/auto.4237.

    Article  CAS  Google Scholar 

  22. Zhao, Y., Yang, J., Liao, W., Liu, X., Zhang, H., Wang, S., Wang, D., Feng, J., Yu, L., and Zhu, W. G. (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity, Nat. Cell Biol., 12, 665-675, doi: https://doi.org/10.1038/ncb2069.

    Article  CAS  Google Scholar 

  23. Steiger-Barraissoul, S., and Rami, A. (2009) Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons, Apoptosis, 14, 1274-1288, doi: https://doi.org/10.1007/s10495-009-0396-9.

    Article  CAS  Google Scholar 

  24. Mizushima, N., and Yoshimori, T. (2007) How to interpret LC3 immunoblotting, Autophagy, 3, 542-545, doi: https://doi.org/10.4161/auto.4600.

    Article  CAS  Google Scholar 

  25. Tanida, I., Ueno, T., and Kominami, E. (2008) LC3 and autophagy, Methods Mol. Biol., 445, 77-88, doi: https://doi.org/10.1007/978-1-59745-157-4_4.

    Article  CAS  Google Scholar 

  26. Kaminskyy, V. O., Piskunova, T., Zborovskaya, I. B., Tchevkina, E. M., and Zhivotovsky, B. (2012) Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation, Autophagy, 8, 1032-1044, doi: https://doi.org/10.4161/auto.20123.

    Article  CAS  Google Scholar 

  27. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature, 371, 346-347, doi: https://doi.org/10.1038/371346a0.

    Article  CAS  Google Scholar 

  28. Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., et al. (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment, Cell Death Dis., 4, e838, doi: https://doi.org/10.1038/cddis.2013.350.

    Article  CAS  Google Scholar 

  29. Mercer, C. A., Kaliappan, A., and Dennis, P. B. (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy, Autophagy, 5, 649-662, doi: https://doi.org/10.4161/auto.5.5.8249.

    Article  CAS  Google Scholar 

  30. Kaminskyy, V., Abdi, A., and Zhivotovsky, B. (2011) A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle, Autophagy, 7, 83-90, doi: https://doi.org/10.4161/auto.7.1.13893.

    Article  CAS  Google Scholar 

  31. Allavena, G., Cuomo, F., Baumgartner, G., Bele, T., Sellgren, A., et al. (2018) Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation, Autophagy, 14, 252-268, doi: https://doi.org/10.1080/15548627.2017.1405192.

    Article  CAS  Google Scholar 

  32. Hoeller, D., and Dikic, I. (2016) How the proteasome is degraded, Proc. Natl. Acad. Sci. USA, 113, 13266-13268, doi: https://doi.org/10.1073/pnas.1616535113.

    Article  CAS  Google Scholar 

  33. Pal, D., and Basu, A. (2017) Protein kinase C-eta regulates Mcl-1 level via ERK1, Cell. Signal., 40, 166-171, doi: https://doi.org/10.1016/j.cellsig.2017.09.012.

    Article  CAS  Google Scholar 

  34. Marshall, R. S., and Vierstra, R. D. (2018) To save or degrade: balancing proteasome homeostasis to maximize cell survival, Autophagy, 14, 2029-2031, doi: https://doi.org/10.1080/15548627.2018.1515531.

    Article  CAS  Google Scholar 

  35. Ryu, Y. K., Hall, C. P., Patrick Reynolds, C., and Kang, M. H. (2014) Caspase-dependent Mcl-1 cleavage and effect of Mcl-1 phosphorylation in ABT-737-induced apoptosis in human acute lymphoblastic leukemia cell lines, Exp. Biol. Med., 239, 1390-1402, doi: https://doi.org/10.1177/1535370214538745.

    Article  CAS  Google Scholar 

  36. Herrant, M., Jacquel, A., Marchetti, S., Belhacene, N., Colosetti, P., Luciano, F., and Auberger, P. (2004) Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis, Oncogene, 23, 7863-7873, doi: https://doi.org/10.1038/sj.onc.1208069.

    Article  CAS  Google Scholar 

  37. Kopeina, G. S., Senichkin, V. V., and Zhivotovsky, B. (2017) Caloric restriction – a promising anti-cancer approach: from molecular mechanisms to clinical trials, Biochim. Biophys. Acta Rev. Cancer, 1867, 29-41, doi: https://doi.org/10.1016/j.bbcan.2016.11.002.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-15-00125). The work in the authors’ laboratories is also supported by the Russian Foundation for Basic Research (projects nos. 18-29-09005, 20-015-00500), and by the Swedish (project no. 190345) and Stockholm (project no. 181301) Cancer Societies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Kopeina.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervushin, N.V., Senichkin, V.V., Kapusta, A.A. et al. Nutrient Deprivation Promotes MCL-1 Degradation in an Autophagy-Independent Manner. Biochemistry Moscow 85, 1235–1244 (2020). https://doi.org/10.1134/S0006297920100119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920100119

Keywords

Navigation