Skip to main content
Log in

Autonomous quadrotor collision avoidance and destination seeking in a GPS-denied environment

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a new integrated guidance and control method for autonomous collision avoidance and navigation in an unmapped GPS-denied environment that contains unknown obstacles. The algorithm is implemented on an experimental custom quadrotor that uses onboard vision sensing (i.e., an Intel RealSense R200) to detect the positions of obstacles. We demonstrate autonomous collision avoidance and destination seeking in experiments, where the quadrotor navigates unknown GPS-denied environments. All feedback measurements are obtained from onboard sensors. The new guidance and control algorithm uses a nonlinear inner-loop attitude controller; a nonlinear middle-loop velocity controller; and an ellipsoidal-potential-field outer-loop guidance algorithm for collision avoidance and destination seeking. The main analytic result regarding the inner-loop control shows that every quadrotor attitude with pitch between \(\pm 90^{\circ }\) is a locally exponentially stable equilibrium of the closed-loop attitude dynamics, and we quantify the region of attraction for each attitude equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Abeywardena, D., Kodagoda, S., Dissanayake, G., & Munasinghe, R. (2013). Improved state estimation in quadrotor MAVs: a novel drift-free velocity estimator. IEEE Robotics & Automation Magazine, 20(4), 32–39.

    Article  Google Scholar 

  • Ahrens, S., Levine, D., Andrews, G., & How, J.P. (2009). Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments. In Proceedings IEEE International Conference Robotics Automation (pp. 2643–2648). Kobe, Japan

  • Almakhles, D. J. (2020). Robust backstepping sliding mode control for a quadrotor trajectory tracking application. IEEE Access, 8, 5515–5525. https://doi.org/10.1109/ACCESS.2019.2962722.

    Article  Google Scholar 

  • Auguliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., et al. (2014). The flight assembled architecture installantion. IEEE Control Systems Magazine, 34(4), 46–97.

    Article  Google Scholar 

  • Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A. S., Krainin, M., et al. (2012). Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. The International Journal of Robotics Research, 31(11), 1320–1343. https://doi.org/10.1177/0278364912455256.

    Article  Google Scholar 

  • Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE-robust autonomous navigation in GPS-denied environments. Journal of Field Robotics, 28(5), 644–666.

    Article  Google Scholar 

  • Bouabdallah, S., Noth, A., & Siegwart, R. (2004). PID vs LQ control techniques applied to an indoor micro quadrotor. In Proceedings of IEEE/RSJ International Conference Intelligent Robotics System (pp. 2451–2456). Sendai, Japan.

  • Bouabdallah, S., & Siegwart, R. (2005). Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In Proceedings IEEE International Conference Robotics Automation (pp. 2247–2252). Barcelona, Spain.

  • Bouabdallah, S., & Siegwart, R. (2007). Full control of a quadrotor. In Proceedings of IEEE/RSJ International Conference Intelligent Robots Systems (pp. 153–158). San Diego, CA.

  • Cabecinhas, D., Cunha, R., & Silvestre, C. (2014). A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Engineering Practice, 26, 1–10.

    Article  Google Scholar 

  • Congling, T., Jingwen, W., Zhaojie, Y., & Guohui, Y. (2016). Integral backstepping based nonlinear control for quadrotor. In Proceedings of Chinese Control Conference (pp. 10581–10585). Chengdou, China.

  • Dierks, T., & Jagannathan, S. (2010). Output feedback control of a quadrotor uav using neural networks. IEEE Transactions on Neural Networks, 21(1), 50–66. https://doi.org/10.1109/TNN.2009.2034145.

    Article  Google Scholar 

  • Dydek, Z.T., Annaswamy, A.M., & Lavretsky, E. (2010). Combined/composite adaptive control of a quadrotor UAV in the presence of actuator uncertainty. In Proceedings AIAA Guidance, Navigation Control Conference Toronto, Canada. AIAA-2010-7575

  • Efe, M.O. (2007). Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes. In Proceedings of Medical Conference Control Automation (pp. 1–6). Athens, Greece.

  • Fowles, G. R. (1986). Analytical mechanics (4th ed.). New York: Saunders.

    MATH  Google Scholar 

  • Greenwood, D. T. (1988). Principles of dynamics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Grzonka, S., Grisetti, G., & Burgard, W. (2012). A fully autonomous indoor quadrotor. IEEE Transactions on Robotics, 28(1), 90–100.

    Article  Google Scholar 

  • Haddadi, S.J., Emamagholi, O., Javidi, F., & Fakharian, A. (2015). Attitude control and trajectory tracking of an autonomous miniature aerial vehicle. In Proceedings of 2015 AI & Robotics. Qazvin, Iran.

  • Hamer, M., Widmer, L., & D’andrea, R. (2019). Fast generation of collision-free trajectories for robot swarms using gpu acceleration. IEEE Access, 7, 6679–6690. https://doi.org/10.1109/ACCESS.2018.2889533.

    Article  Google Scholar 

  • Hoffmann, G.M., Huang, H., Waslander, S.L., & Tomlin, C.J. (2007). Quadrotor helicopter flight dynamics and control: Theory and experiment. In Proceedings of AIAA Guidence Navigation, and Control Conference Hilton Head, SC.

  • Honegger, D., Meier, L., Tanskanen, P., & Pollefeys, M. (2013). An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. In Proceedings of IEEE International Conference on Robotics and Automation. (pp. 1736–1741). Karlsruhe, Germany.

  • Hwangbo, J., Sa, I., Siegwart, R., & Hutter, M. (2017). Control of a quadrotor with reinforcement learning. IEEE Robotics and Automation Letters, 2(4), 2096–2103. https://doi.org/10.1109/LRA.2017.2720851.

    Article  Google Scholar 

  • Jiang, F., Pourpanah, F., & Hao, Q. (2020). Design, implementation, and evaluation of a neural-network-based quadcopter uav system. IEEE Transactions on Industrial Electronics, 67(3), 2076–2085. https://doi.org/10.1109/TIE.2019.2905808.

    Article  Google Scholar 

  • Kim, S., & Ahn, C. K. (2020). Adaptive nonlinear tracking control algorithm for quadcopter applications. IEEE Transactions on Aerospace and Electronic Systems, 56(1), 84–94. https://doi.org/10.1109/TAES.2019.2911768.

    Article  Google Scholar 

  • Kim, S., Ahn, C. K., & Shi, P. (2019). Performance recovery tracking-controller for quadcopters via invariant dynamic surface approach. IEEE Transactions on Industrial Informatics, 15(9), 5235–5243. https://doi.org/10.1109/TII.2019.2914066.

    Article  Google Scholar 

  • Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013). Towards a swarm of agile micro quadrotors. Autonomous Robots, 85(4), 287–300. https://doi.org/10.1007/s10514-013-9349-9.

    Article  Google Scholar 

  • Lambert, N. O., Drew, D. S., Yaconelli, J., Levine, S., Calandra, R., & Pister, K. S. J. (2019). Low-level control of a quadrotor with deep model-based reinforcement learning. IEEE Robotics and Automation Letters, 4(4), 4224–4230. https://doi.org/10.1109/LRA.2019.2930489.

    Article  Google Scholar 

  • Lee, D., Kim, H. J., & Sastry, S. (2009). Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of Control, Automation and Systems, 7(3), 419–428.

    Article  Google Scholar 

  • Lee, T., Leok, M., & McClamroch, N.H. (2010). Geometric tracking control of a quadrotor UAV on SE(3). In Proceedings of Conference on Decision and Control (pp. 5420–5425). Atlanta, GA.

  • Lindsey, Q., Mellinger, D., & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3), 323–336. https://doi.org/10.1007/s10514-012-9305-0.

    Article  Google Scholar 

  • Lippay, Z.S., & Hoagg, J.B. (2019). Leader-following formation control in a rotating frame for agents with double-integrator dynamics: Generalized stability results and experiments. In Proceedings of Conference on Decision and Control (pp. 8236–8241). Nice, France.

  • Lippay, Z.S., & Hoagg, J.B. (2020). Leader-following formation control with time-varying formations and bounded controls for agents with double integrator dynamics. In Proceedings of American Control Conference (pp. 871–876). Denver, CO.

  • Loianno, G., Cross, G., Qu, C., Mulgaonkar, Y., Hesch, J. A., & Kumar, V. (2015). Flying smartphones: Automated flight enabled by consumer electronics. IEEE Robotics & Automation Magazine, 22(2), 24–32. https://doi.org/10.1109/MRA.2014.2382792.

    Article  Google Scholar 

  • Luukkonen, T. (2011). Modeling and control of quadcopter. Ph.D. thesis, Aalto University, School of Science.

  • Ma, C., Lam, J., & Lewis, F. L. (2019). Trajectory regulating model reference adaptive controller for robotic systems. IEEE Transactions on Control Systems Technology, 27(6), 2749–2756. https://doi.org/10.1109/TCST.2018.2858203.

    Article  Google Scholar 

  • Mac, T.T., Copot, C., Hernandez, A., & Keyser, R.D. (2016). Improved potential field method for unknown obstacle avoidance using UAV in indoor environment. In Proceedings of International Symposium Applied Machine Intelligence and Informatics, pp. 345–350. Herlany, Slovakia.

  • Madani, T., & Benallegue, A. (2006). Backstepping control for a quadrotor helicopter. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3255–3260). Beijing, China.

  • Matouk, D., Gherouat, O., Abdessemed, F., & Hassam, A. (2016). Quadrotor position and attitude control via backstepping approach. In Proceedings of International Conference on Modelling, Identification and Control (pp. 73–79). Algiers, Algeria.

  • Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 2520–2525). Shanghai, China.

  • Mellinger, D., Michael, N., & Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. International Journal Robotics Research, 31(5), 664–674. https://doi.org/10.1177/0278364911434236.

    Article  Google Scholar 

  • Murray, R. M. (2007). Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 129(5), 571–583.

    Article  Google Scholar 

  • Okyere, E., Bousbaine, A., Poyi, G. T., Joseph, A. K., & Andrade, J. M. (2019). Lqr controller design for quad-rotor helicopters. The Journal of Engineering, 2019(17), 4003–4007. https://doi.org/10.1049/joe.2018.8126.

    Article  Google Scholar 

  • Pounds, P., Mahony, R., & Corke, P. (2010). Modelling and control of a large quadrotor robot. Control Engineering Practice, 18(7), 691–699. https://doi.org/10.1016/j.conengprac.2010.02.008. Special Issue on Aerial Robotics.

    Article  Google Scholar 

  • Punzo, G., Karagiannakis, P., Bennet, D. J., Macdonald, M., & Weiss, S. (2014). Enabling and exploiting self-similar central symmetry formations. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 689–703.

    Article  Google Scholar 

  • Qasim, M., & Kim, K. D. (2016). Super-ellipsoidal potential function for autonomous collision avoidance of a teleoperated UAV. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10, 164–169.

    Google Scholar 

  • Rehmatullah, F., & Kelly, J. (2015). Vision-based collision avoidance for personal aerial vehicles using dynamic potential fields. In Proceedings of Conference Computer Robot Vision (pp. 297–304). Halifax, Canada.

  • Saeedi, S., Nagaty, A., Thibault, C., Trentini, M., & Li, H. (2016). Perception and navigation for an autonomous quadrotor in GPS-denied environments. International Journal of Robotics and Automation, 31, https://doi.org/10.2316/Journal.206.2016.6.206-4434.

  • Saska, M., Vonasek, V., Chudoba, J., Thomas, J., Loianno, G., & Kumar, V. (2016). Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles. Journal of Intelligent & Robotic Systems, 84(2), 469–492. https://doi.org/10.1007/s10846-016-0338-z.

    Article  Google Scholar 

  • Shen, S., Michael, N., & Kumar, V. (2011). Autonomous multi-floor indoor navigation with a computationally constrained MAV. In Proceedings of IEEE International Conference Robotics Automation (pp. 20–25). Shanghai, China.

  • Tayebi, A., & McGilvray, S. (2006). Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology, 14(3), 562–571.

    Article  Google Scholar 

  • Turpin, M., Michael, N., & Kumar, V. (2012). Trajectory design and control for aggressive formation flight with quadrotors. Autonomous Robots, 33, 143–156.

    Article  Google Scholar 

  • Turpin, M., Michael, N., & Kumar, V. (2014). Concurrent assignment and planning of trajectories for multiple robots. International Journals of Robotics Research, 33(1), 98–112. https://doi.org/10.1177/0278364913515307.

    Article  Google Scholar 

  • Wellman, B. J., & Hoagg, J. B. (2017). A flocking algorithm with individual agent destinations and without a centralized leader. Systems & Control Letters, 102, 57–67. https://doi.org/10.1016/j.sysconle.2017.01.006.

    Article  MathSciNet  MATH  Google Scholar 

  • Wellman, B.J., & Hoagg, J.B. (2017). A sampled-data flocking algorithm for agents with double-integrator dynamics. In Proceedings of American Control Conference (pp. 1334–1339). Seattle, WA.

  • Wellman, B.J., & Hoagg, J.B.: Sampled-data flocking with application to unmanned rotorcraft. In Proceedings of AIAA Guidance, Navigation and Control Conference, AIAA-2018-1856. Kissimmee, FL (2018). https://doi.org/10.2514/6.2018-1856.

  • Wen, J. T. Y., & Kreutz-Delgado, K. (1991). The attitude control problem. Transactions on Automatic Control, 36(10), 1148–1162.

    Article  MathSciNet  Google Scholar 

  • Xie, W., Yu, G., Cabecinhas, D., Cunha, R., & Silvestre, C. (2021). Global saturated tracking control of a quadcopter with experimental validation. IEEE Control Systems Letters, 5(1), 169–174. https://doi.org/10.1109/LCSYS.2020.3000561.

    Article  Google Scholar 

  • Xu, R., & Ozguner, U. (2006). Sliding mode control of a quadrotor helicopter. In Proceedings of Conference on Decision and Control (pp. 4957–4962). San Diego, CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse B. Hoagg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the National Science Foundation (OIA-1539070).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 41225 KB)

Appendix A. Proof of Theorem 1

Appendix A. Proof of Theorem 1

Proof

It follows from (5) and (11) that

$$\begin{aligned} \dot{e}_\varPhi = A(e_\phi ,e_\theta ) e_\omega - K_\varPhi e_\varPhi , \end{aligned}$$

where

$$\begin{aligned} A(e_\phi ,e_\theta ) \triangleq \begin{bmatrix} 1 &{}\quad \mathrm{s}_{e_\phi +\phi _{\mathrm{e}}} \mathrm{t}_{e_\theta +\theta _{\mathrm{e}}} &{}\quad \mathrm{c}_{e_\phi +\phi _{\mathrm{e}}} \mathrm{t}_{e_\theta +\theta _{\mathrm{e}}} \\ 0 &{}\quad \mathrm{c}_{e_\phi +\phi _{\mathrm{e}}} &{}\quad -\mathrm{s}_{e_\phi +\phi _{\mathrm{e}}} \\ 0 &{}\quad \mathrm{s}_{e_\phi +\phi _{\mathrm{e}}} / \mathrm{c}_{e_\theta +\theta _{\mathrm{e}}} &{}\quad \mathrm{c}_{e_\phi +\phi _{\mathrm{e}}} / \mathrm{c}_{e_\theta +\theta _{\mathrm{e}}} \end{bmatrix}. \end{aligned}$$

Substituting (12) into (10) yields

$$\begin{aligned} \dot{e}_\omega = -K_\omega e_\omega - A^{\mathrm{T}}(e_\phi ,e_\theta ) e_\varPhi . \end{aligned}$$

Next, define \(D \triangleq \{ (e_\varPhi , e_\omega ) \in \mathbb {R}^6: | e_2^{\mathrm{T}} e_\varPhi +\theta _{\mathrm{e}} | < \frac{\pi }{2} \}\), and it follows that for all \((e_\varPhi ,e_\omega ) \in D\), the derivative of V along the trajectories of (5), (6), and (10)–(12) is

$$\begin{aligned} \dot{V}(e_\varPhi ,e_\omega )&\triangleq \dfrac{\partial V}{\partial e_\varPhi } \dot{e}_\varPhi + \dfrac{\partial V}{\partial e_\omega } \dot{e}_\omega \\&= - 2(e_\varPhi ^{\mathrm{T}} K_\varPhi e_\varPhi + e_\omega ^{\mathrm{T}} K_\omega e_\omega ) \\&\le - c_1 V(e_\varPhi ,e_\omega ), \end{aligned}$$

where \(c_1 \triangleq 2 \, \mathrm{min} \, \{\lambda _\mathrm{min}(K_\varPhi ),\lambda _{\mathrm{min}}(K_\omega )\}\) is positive. Thus, \((\varPhi ,\omega ) \equiv (\varPhi _{\mathrm{e}},0)\) is a locally exponentially stable equilibrium of (5), (6), and (10)–(12).

To show the final statement of the result, define \(R_{\mathrm{A}}' \triangleq \{ (e_\varPhi ,e_\omega ) \in \mathbb {R}^6: V(e_\varPhi ,e_\omega ) < (\frac{\pi }{2} - | {\theta _{\mathrm{e}}} | )^2 \}\). Since \(R_{\mathrm{A}}' \subseteq D\) and for all \((e_\varPhi ,e_\omega ) \in D {\setminus } \{0\}\), \(\dot{V}(e_\varPhi ,e_\omega ) < 0\), it follows that \(R_{\mathrm{A}}'\) is invariant with respect to (5), (6), and (10)–(12).

Let \((\varPhi (0),\omega (0)) \in R_{\mathrm{A}}\), and it follows that \((e_\varPhi (0),e_\omega (0)) \in R_{\mathrm{A}}'\). Since \(R_{\mathrm{A}}'\) is invariant with respect to (5), (6), and (10)–(12), it follows that for all \(t \ge 0\), \((e_\varPhi (t),e_\omega (t)) \in R_{\mathrm{A}}' \subseteq D\). Therefore,

$$\begin{aligned} 0&\le \int _{0}^{\infty } V(e_\varPhi (t),e_\omega (t)) \, \mathrm{d}t \\&\le - \dfrac{1}{c_1}\int _{0}^{\infty } \dot{V}(e_\varPhi (t),e_\omega (t)) \, \mathrm{d}t \\&= \dfrac{1}{c_1}\bigg [V(e_\varPhi (0),e_\omega (0)) - \lim _{t \rightarrow \infty } V(e_\varPhi (t),e_\omega (t))\bigg ] \\&\le \dfrac{1}{c_1}V(e_\varPhi (0),e_\omega (0)), \end{aligned}$$

which implies that \(\int _{0}^{\infty } V(e_\varPhi (t),e_\omega (t)) \, \mathrm{d}t\) exists. Since, in addition, \( \dot{V}(e_\varPhi (t),e_\omega (t))\) is bounded, it follows from Barbalat’s lemma that \( \lim _{t \rightarrow \infty } V(e_\varPhi (t),e_\omega (t))=0\), which confirms the last statement of the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirven, T., Hoagg, J.B. Autonomous quadrotor collision avoidance and destination seeking in a GPS-denied environment. Auton Robot 45, 99–118 (2021). https://doi.org/10.1007/s10514-020-09949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09949-2

Keywords

Navigation