Skip to main content
Log in

Lepton capture rates due to isotopes of vanadium in astrophysical environment

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Lepton (electron and positron) capture rates on iron-regime nuclei are an essential element for modeling the late stages of progression of massive stars that become core collapse and thermonuclear supernova. As per previous simulation studies, lepton capture (LC) rates on isotopes of vanadium are believed to have a substantial effect in regulating the Ye (lepton to baryon fraction) during the final evolutionary phases. The present work involves the calculation of lepton capture rates for 22 isotopes of vanadium by making use of the proton-neutron (pn-) quasiparticle random phase approximation (QRPA) model. The covered mass range is from A = 43 to 64. The LC rates have been computed over stellar densities ranging from \(10^{1}\) to \(10^{11}\) (g/cm3) and for the temperature range \(10^{7} - 3 \times 10^{10}\) (K). A comparison of our calculated LC rates to the rates computed using other models (IPM and LSSM) has also been presented. As compared to the rates calculated by other models, pn-QRPA rates at high temperature (\(3 \times 10^{10}\) K) are larger by up to 1-2 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audi, G., et al.: Chin. Phys. C 41, 030001 (2017)

    ADS  Google Scholar 

  • Aufderheide, M.B., Fushiki, I., Woosley, S.E., et al.: Astrophys. J. Suppl. 91, 389 (1994)

    ADS  Google Scholar 

  • Aufderheide, M.B., Bloom, S.D., Mathews, G.J., Resler, D.A.: Phys. Rev. C 53, 3139 (1996)

    ADS  Google Scholar 

  • Bethe, H.A.: Rev. Mod. Phys. 62, 801 (1990)

    ADS  Google Scholar 

  • Bethe, H.A., Brown, G.E., Applegate, J., et al.: Nucl. Phys. A 324, 487 (1979)

    ADS  Google Scholar 

  • Brink, D.: D. Phil. Thesis, Oxford University, Unpublished (1955)

  • Burbidge, E.M., Burbidge, C.R., Fowler, W.A., Hoyle, F.: Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  • Busso, M., Gallino, R., Wasserburg, G.J.: Annu. Rev. Astron. Astrophys. 37, 239–309 (1999)

    ADS  Google Scholar 

  • Cole, A.L., et al.: Phys. Rev. C 86, 015809 (2012)

    ADS  Google Scholar 

  • El-Kateb, S., et al.: Phys. Rev. C 49, 3128 (1994)

    ADS  Google Scholar 

  • Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. Suppl. Ser. 42, 447 (1980)

    ADS  Google Scholar 

  • Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. Suppl. Ser. 48, 279 (1982a)

    ADS  Google Scholar 

  • Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. 252, 715 (1982b)

    ADS  Google Scholar 

  • Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. 293, 1 (1985)

    ADS  Google Scholar 

  • Gove, N.B., Martin, M.J.: At. Data Nucl. Data Tables 10, 205 (1971)

    ADS  Google Scholar 

  • Hardy, J.C., Towner, I.C.: Phys. Rev. C 79(5), 055502 (2009)

    ADS  Google Scholar 

  • Heger, A., et al.: Phys. Rev. Lett. 86, 1678 (2001)

    ADS  Google Scholar 

  • Hirsch, M., et al.: Nucl. Phys. 535, 62 (1991)

    Google Scholar 

  • Hirsch, M., et al.: At. Data Nucl. Data Tables 53, 165–193 (1993)

    ADS  Google Scholar 

  • Hix, W.R., et al.: Phys. Rev. Lett. 91, 201102 (2003)

    ADS  Google Scholar 

  • Ikeda, K., Fujii, S., Fujita, J.I.: Phys. Lett. 3, 271 (1963)

    ADS  Google Scholar 

  • Johnson, C.W.: Phys. Lett. B 750, 72 (2015)

    ADS  Google Scholar 

  • Langanke, K., Martínez-Pinedon, G.: Nucl. Phys. A 673, 481 (2000)

    ADS  Google Scholar 

  • Langanke, K., Martínez-Pinedon, G.: Rev. Mod. Phys. 75, 819 (2003)

    ADS  Google Scholar 

  • Misch, G.W., et al.: Phys. Rev. C 90, 065808 (2014)

    ADS  Google Scholar 

  • Möller, P., et al.: At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  • Nabi, J.-U., Klapdor-Kleingrothaus, H.V.: Eur. Phys. J. A 5, 337 (1999a)

    ADS  Google Scholar 

  • Nabi, J.-U., Klapdor-Kleingrothaus, H.V.: At. Data Nucl. Data Tables 71, 149 (1999b)

    ADS  Google Scholar 

  • Nabi, J.-U., Klapdor-Kleingrothaus, H.V.: At. Data Nucl. Data Tables 88, 237 (2004)

    ADS  Google Scholar 

  • Nabi, J.-U., Majid, M.: Int. J. Mod. Phys. B 26(3), 1750005 (2017)

    ADS  Google Scholar 

  • Nabi, J.-U., Rahman, M.-U.: Phys. Lett. B 612, 190 (2005)

    ADS  Google Scholar 

  • Nabi, J.-U., Sajjad, M.: Phys. Rev. C 76, 055803 (2007)

    ADS  Google Scholar 

  • Nabi, J.-U., Sajjad, M.: Phys. Rev. C 77, 055802 (2008)

    ADS  Google Scholar 

  • Nabi, J.-U., Rahman, M.-U., Sajjad, M.: Braz. J. Phys. 37, 1238 (2007)

    ADS  Google Scholar 

  • Nakamura, K., et al. (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37(7A), 075021 (2010)

    ADS  Google Scholar 

  • Nilsson, S.G.: Mat.-Fys. Medd. Dan. Vid. Selsk. 29, 16 (1955)

    Google Scholar 

  • Pruet, J., Fuller, G.M.: Astrophys. J. Suppl. Ser. 149, 189 (2003)

    ADS  Google Scholar 

  • Rahman, M.-U., Nabi, J.-U.: Astrophys. Space Sci. 348, 427–435 (2013)

    ADS  Google Scholar 

  • Rauscher, T., Heger, A., Hoffman, R.D., Woosley, S.E.: Astrophys. J. 576, 323–348 (2002)

    ADS  Google Scholar 

  • Sarriguren, P.: Phys. Rev. C 87, 045801 (2013)

    ADS  Google Scholar 

  • Sarriguren, P.: Phys. Rev. C 93, 054309 (2016)

    ADS  Google Scholar 

  • Shehzadi, R., Nabi, J.-U., Ali, H.: Astrophys. Space Sci. 365, 3 (2020)

    ADS  Google Scholar 

  • Staudt, A., et al.: At. Data Nucl. Data Tables 44, 79 (1990)

    ADS  Google Scholar 

  • Suzuki, T., Toki, H., Nomoto, K.: Astrophys. J. 817, 163 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project numbers 5557/KPK/NRPU/R\(\&\)D/HEC/2016, 9-5(Ph-1-MG-7)/PAK-TURK/R\(\&\)D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramoona Shehzadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzadi, R., Nabi, JU. & Farooq, F. Lepton capture rates due to isotopes of vanadium in astrophysical environment. Astrophys Space Sci 365, 173 (2020). https://doi.org/10.1007/s10509-020-03887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03887-2

Keywords

Navigation