Skip to main content
Log in

A novel circular ssDNA virus of the phylum Cressdnaviricota discovered in metagenomic data from otter clams (Lutraria rhynchaena)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, we present an analysis of metagenome sequences obtained from a filtrate of a siphon tissue homogenate of otter clams (Lutraria rhynchaena) with swollen-siphon disease. The viral signal was mined from the metagenomic data, and a novel circular ssDNA virus was identified. Genomic features and phylogenetic analysis showed that the virus belongs to the phylum Cressdnaviricota, which consists of viruses with circular, single-stranded DNA (ssDNA) genomes. Members of this phylum have been identified in various species and in environmental samples. The newly found virus is distantly related to the currently known members of the phylum Cressdnaviricota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Availability of data and material

The raw reads from the metagenome sequencing were deposited in the NCBI Sequence Read Archive under accession number SRR10717928. The complete genome sequence of the circular ssDNA virus determined in this study was submitted to the GenBank database with the accession no. MN818866.

References

  1. Luca M, Nam DX (2012) Hatchery techniques applied for the artificial production of snout otter clam (Lutraria rhynchaena) in a small scale farms in Nha Trang City, Vietnam. Aquac Asia 17:25–29

    Google Scholar 

  2. Thai TB, Dinh QT, Tran TT (2015) Taxonomy of snout otter clam (Lutraria sp) in Vietnam using directly DNA sequencing in 16S mitochondrial DNA. Vietnam J Agric Rural Dev 22:107–113

    Google Scholar 

  3. Truong TMH, Dang TL, Phan TV (2014) A study on bacteria species in cultured otter clams (Lutraria philippinarum Reeve, 1854) in Vietnam. Vietnam J Agric Rural Dev 18:90–94

    Google Scholar 

  4. Truong TMH, Dang TL, Phan TV (2015) Role of viruses (filtrated solution) to swollen siphon disease on otter clam (Lutraria philippinarum Reeve, 1854) cultured in different environment condition. Vietnam J Agric Rural Dev 7:96–101

    Google Scholar 

  5. Dang TL, Phan TV, Nguyen TT (2018) Detection of virus-like particles (VLPs) in otter clam ((Lutraria philippinarum Reeve, 1854) spat collected from hatchery. Vietnam J Agric Sci 16(10):867–873

    Google Scholar 

  6. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio. https://doi.org/10.1128/mbio.02288-14

    Article  PubMed Central  PubMed  Google Scholar 

  7. Alavandi SV, Poornima M (2012) Viral metagenomics: a tool for virus discovery and diversity in aquaculture. Indian J Virol 23(2):88–98. https://doi.org/10.1007/s13337-012-0075-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wylezich C, Papa A, Beer M, Hoper D (2018) A versatile sample processing workflow for metagenomic pathogen detection. Sci Rep 8(1):13108. https://doi.org/10.1038/s41598-018-31496-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Labonte JM, Suttle CA (2013) Metagenomic and whole-genome analysis reveals new lineages of gokushoviruses and biogeographic separation in the sea. Front Microbiol 4:404. https://doi.org/10.3389/fmicb.2013.00404

    Article  PubMed Central  PubMed  Google Scholar 

  10. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4(4):470–483. https://doi.org/10.1038/nprot.2009.10

    Article  CAS  PubMed  Google Scholar 

  11. Hall RJ, Wang J, Todd AK, Bissielo AB, Yen S, Strydom H, Moore NE, Ren X, Huang QS, Carter PE, Peacey M (2014) Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. J Virol Methods 195:194–204. https://doi.org/10.1016/j.jviromet.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  12. Ng TF, Manire C, Borrowman K, Langer T, Ehrhart L, Breitbart M (2009) Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol 83(6):2500–2509. https://doi.org/10.1128/JVI.01946-08

    Article  CAS  PubMed  Google Scholar 

  13. Ng TF, Wheeler E, Greig D, Waltzek TB, Gulland F, Breitbart M (2011) Metagenomic identification of a novel anellovirus in Pacific harbor seal (Phoca vitulina richardsii) lung samples and its detection in samples from multiple years. J Gen Virol 92(Pt 6):1318–1323. https://doi.org/10.1099/vir.0.029678-0

    Article  CAS  PubMed  Google Scholar 

  14. Ng TF, Alavandi S, Varsani A, Burghart S, Breitbart M (2013) Metagenomic identification of a nodavirus and a circular ssDNA virus in semi-purified viral nucleic acids from the hepatopancreas of healthy Farfantepenaeus duorarum shrimp. Dis Aquat Organ 105(3):237–242. https://doi.org/10.3354/dao02628

    Article  CAS  PubMed  Google Scholar 

  15. Vibin J, Chamings A, Collier F, Klaassen M, Nelson TM, Alexandersen S (2018) Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci Rep 8(1):8686. https://doi.org/10.1038/s41598-018-26851-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E, Rosario K, Yutin N, Wolf YI, Harrach B, Zerbini FM, Dolja VV, Kuhn JH, Koonin EV (2020) Cressdnaviricota: a virus phylum unifying seven families of rep-encoding viruses with single-stranded circular DNA Genomes. J Virol. https://doi.org/10.1128/JVI.00582-20

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao L, Rosario K, Breitbart M, Duffy S (2019) Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res 103:71–133. https://doi.org/10.1016/bs.aivir.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Shibahara T, Sato K, Ishikawa Y, Kadota K (2000) Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J Vet Med Sci 62(11):1125–1131. https://doi.org/10.1292/jvms.62.1125

    Article  CAS  PubMed  Google Scholar 

  19. Segales J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 164(1–2):10–19. https://doi.org/10.1016/j.virusres.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  20. Todd D (2004) Avian circovirus diseases: lessons for the study of PMWS. Vet Microbiol 98(2):169–174. https://doi.org/10.1016/j.vetmic.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  21. Decaro N, Martella V, Desario C, Lanave G, Circella E, Cavalli A, Elia G, Camero M, Buonavoglia C (2014) Genomic characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy. PLoS One 9(8):e105909. https://doi.org/10.1371/journal.pone.0105909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34(1):8–18. https://doi.org/10.1590/S0102-053620160000100002

    Article  Google Scholar 

  23. Abraham AD, Bencharki B, Torok V, Katul L, Varrelmann M, Josef Vetten H (2010) Two distinct nanovirus species infecting faba bean in Morocco. Arch Virol 155(1):37–46. https://doi.org/10.1007/s00705-009-0548-9

    Article  CAS  PubMed  Google Scholar 

  24. Abraham AD, Varrelmann M, Josef Vetten H (2012) Three distinct nanoviruses, one of which represents a new species, infect faba bean in Ethiopia. Plant Dis 96(7):1045–1053. https://doi.org/10.1094/PDIS-09-11-0734-RE

    Article  CAS  PubMed  Google Scholar 

  25. Rosario K, Schenck RO, Harbeitner RC, Lawler SN, Breitbart M (2015) Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front Microbiol 6:696. https://doi.org/10.3389/fmicb.2015.00696

    Article  PubMed Central  PubMed  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676. https://doi.org/10.1093/bioinformatics/btv033

    Article  CAS  PubMed  Google Scholar 

  28. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:385. https://doi.org/10.1186/1471-2105-12-385

    Article  Google Scholar 

  29. Roux S, Enault F, Hurwitz BL, Sullivan MB (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985. https://doi.org/10.7717/peerj.985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41(Web Server issue):W22–W28. https://doi.org/10.1093/nar/gkt389

    Article  PubMed Central  PubMed  Google Scholar 

  31. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20(4):1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kagaya Y, Minei R, Duong HTT, Le BTN, Dang LT, Tran TTH, Nguyen HT, Kinoshita K, Yura K, Ogura A, Kim OTP (2020) Metagenome sequences from the environment of diseased otter clams, Lutraria rhynchaena, from a Farm in Vietnam. Microbiol Resour Announc. https://doi.org/10.1128/mra.01068-19

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494(7437):357–360. https://doi.org/10.1038/nature11921

    Article  CAS  PubMed  Google Scholar 

  35. Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, Watkins SC, Putonti C (2015) Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J 12:164. https://doi.org/10.1186/s12985-015-0395-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sible E, Cooper A, Malki K, Bruder K, Watkins SC, Fofanov Y, Putonti C (2015) Survey of viral populations within Lake Michigan nearshore waters at four Chicago area beaches. Data Brief 5:9–12. https://doi.org/10.1016/j.dib.2015.08.001

    Article  PubMed Central  PubMed  Google Scholar 

  37. Segales J, Kekarainen T, Cortey M (2013) The natural history of porcine circovirus type 2: from an inoffensive virus to a devastating swine disease? Vet Microbiol 165(1–2):13–20. https://doi.org/10.1016/j.vetmic.2012.12.033

    Article  CAS  PubMed  Google Scholar 

  38. Lorincz M, Dan A, Lang M, Csaba G, Toth AG, Szekely C, Csagola A, Tuboly T (2012) Novel circovirus in European catfish (Silurus glanis). Arch Virol 157(6):1173–1176. https://doi.org/10.1007/s00705-012-1291-1

    Article  CAS  PubMed  Google Scholar 

  39. Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157(10):1851–1871. https://doi.org/10.1007/s00705-012-1391-y

    Article  CAS  PubMed  Google Scholar 

  40. Rosario K, Duffy S, Breitbart M (2009) Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 90(Pt 10):2418–2424. https://doi.org/10.1099/vir.0.012955-0

    Article  CAS  PubMed  Google Scholar 

  41. McDaniel LD, Rosario K, Breitbart M, Paul JH (2014) Comparative metagenomics: natural populations of induced prophages demonstrate highly unique, lower diversity viral sequences. Environ Microbiol 16(2):570–585. https://doi.org/10.1111/1462-2920.12184

    Article  CAS  PubMed  Google Scholar 

  42. Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, Varsani A (2019) Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). Infect Genet Evol 71:179–188. https://doi.org/10.1016/j.meegid.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  43. Orton JP, Morales M, Fontenele RS, Schmidlin K, Kraberger S, Leavitt DJ, Webster TH, Wilson MA, Kusumi K, Dolby GA, Varsani A (2020) Virus discovery in desert tortoise fecal samples: novel circular single-stranded DNA viruses. Viruses. https://doi.org/10.3390/v12020143

    Article  PubMed Central  PubMed  Google Scholar 

  44. Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R, Xiao YQ, Chen X, Yang J, Fu WG, Zhang W, Qi GL (2020) Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol J 17(1):61. https://doi.org/10.1186/s12985-020-01332-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Bilateral Joint Research Projects “Bioinformatics Analyses for the Genome Sequence of Lutraria philippinarum Infecting Virus” (FY2017-2019) from the Japan Society for the Promotion of Science, and “Metagenomic analyses for discovery of virus that caused swollen siphon disease on otter clam (Lutraria phylippinarum) in Vietnam” (VAST.HTQT.NHATBAN.02/17-19) from the Vietnam Academy of Science and Technology. This research was also partly supported by the project “Study of technical solution and management for efficiently controlling the swollen siphon disease in otter clam (Lutraria phylippinarum)” from the Ministry of Agriculture and Rural Development of Vietnam.

Funding

This research was supported by Bilateral Joint Research Projects “Bioinformatics Analyses for the Genome Sequence of Lutraria philippinarum Infecting Virus” (FY2017-2019) from the Japan Society for the Promotion of Science, and “Metagenomic analyses for discovery of virus that caused swollen siphon disease on otter clam (Lutraria phylippinarum) from the Vietnam” (VAST.HTQT.NHATBAN.02/17-19) by Vietnam Academy of Science and Technology. This research was partly supported by the project “Study of technical solution and management for efficiently controlling the swollen siphon disease in otter clam (Lutraria phylippinarum)” from the Ministry of Agriculture and Rural Development of Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oanh T. P. Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Roman Pogranichniy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, O.T.P., Kagaya, Y., Tran, H.S. et al. A novel circular ssDNA virus of the phylum Cressdnaviricota discovered in metagenomic data from otter clams (Lutraria rhynchaena). Arch Virol 165, 2921–2926 (2020). https://doi.org/10.1007/s00705-020-04819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04819-9

Navigation