Skip to main content
Log in

Investigation of the solution for discontinuous contact problem between a functionally graded (FG) layer and homogeneous half-space

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2020

This article has been updated

Abstract

In this study, the discontinuous contact problem between a functionally graded (FG) layer, which is loaded symmetrically with point load P through a rigid block, and a homogeneous half-space was solved using the theory of elasticity and integral transform techniques. The shear modulus and density of the layer addressed in the problem vary with an exponential function along with its height. The half-space is homogeneous, and no binder exists on the contact surface containing the FG layer. In the solution, the body force of the FG layer was considered, whereas that of the homogeneous half-space was neglected. The Poisson’s ratios of both the FG layer and homogeneous half-space were assumed to remain constant. Additionally, all the surfaces addressed in the problem were assumed to be frictionless. Using the theory of elasticity and integral transform techniques, the discontinuous contact problem was reduced to two integral equations, wherein the contact stress under the rigid block and the slope of the separation, which occurred at the interface of the FG layer and homogeneous half-space, are unknown. These integral equations were solved numerically for the flat condition of the rigid block profile using the Gauss–Chebyshev integration formula. Consequently, the stress distributions, start–end points of the separation region, and separation displacements between the FG layer and homogeneous half-space were obtained for various dimensionless quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 07 October 2020

    Unfortunately, figure 5, figure 6, figure 8 and figure 10.

References

  1. Ke, L.-L., Wang, Y.-S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int. J. Solids Struct. 43(18–19), 5779–5798 (2006)

    Article  MATH  Google Scholar 

  2. Guler, M.A., Erdogan, F.: Contact mechanics of two deformable elastic solids with graded coatings. Mech. Mater. 38(7), 633–647 (2006)

    Article  Google Scholar 

  3. El-Borgi, S., Abdelmoula, R., Keer, L.: A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 43(3–4), 658–674 (2006)

    Article  MATH  Google Scholar 

  4. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49(2), 161–182 (2007)

    Article  Google Scholar 

  5. Ke, L.-L., Wang, Y.-S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solids 26(1), 171–188 (2007)

    Article  MATH  Google Scholar 

  6. Liu, T.-J., Wang, Y.-S., Zhang, C.: Axisymmetric frictionless contact of functionally graded materials. Arch. Appl. Mech. 78(4), 267–282 (2007)

    Article  MATH  Google Scholar 

  7. Yang, J., Ke, L.-L.: Two-dimensional contact problem for a coating-graded layer-substrate structure under a rigid cylindrical punch. Int. J. Mech. Sci. 50(6), 985–994 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, T.-J., Wang, Y.S.: Axisymmetric frictionless contact problem of a functionally graded coating with exponentially varying modulus. Acta Mech. 199(1–4), 151–165 (2008)

    Article  MATH  Google Scholar 

  9. Dag, S., Guler, M.A., Yildirim, B., Cihan Ozatag, A.: Sliding frictional contact between a rigid punch and a laterally graded elastic medium. Int. J. Solids Struct. 46(22–23), 4038–4053 (2009)

    Article  MATH  Google Scholar 

  10. Choi, H.J.: On the plane contact problem of a functionally graded elastic layer loaded by a frictional sliding flat punch. J. Mech. Sci. Technol. 23(10), 2703–2713 (2009)

    Article  Google Scholar 

  11. Rhimi, M., El-Borgi, S., Ben Saïd, W., Ben Jemaa, F.: A receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 46(20), 3633–3642 (2009)

    Article  MATH  Google Scholar 

  12. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. Acta Mech. 209(3–4), 249–268 (2009)

    MATH  Google Scholar 

  13. Rhimi, M., El-Borgi, S., Lajnef, N.: A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Mech. Mater. 43(12), 787–798 (2011)

    Article  Google Scholar 

  14. Aizikovich, S., Vasil’ev, A., Krenev, L., Trubchik, I., Seleznev, N.: Contact problems for functionally graded materials of complicated structure. Mech. Compos. Mater. 47(5), 539–548 (2011)

    Article  Google Scholar 

  15. Kulchytsky-Zhyhailo, R., Bajkowski, A.: Analytical and numerical methods of solution of three-dimensional problem of elasticity for functionally graded coated half-space. Int. J. Mech. Sci. 54(1), 105–112 (2012)

    Article  Google Scholar 

  16. Sburlati, R.: Elastic solution in a functionally graded coating subjected to a concentrated force. J. Mech. Mater. Struct. 7(4), 401–412 (2012)

    Article  Google Scholar 

  17. Guler, M.A., Gülver, Y.F., Nart, E.: Contact analysis of thin films bonded to graded coatings. Int. J. Mech. Sci. 55(1), 50–64 (2012)

    Article  Google Scholar 

  18. Liu, T.-J., Wang, Y.-S., Xing, Y.-M.: The axisymmetric partial slip contact problem of a graded coating. Meccanica 47(7), 1673–1693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Çömez, İ.: Contact problem of a functionally graded layer resting on a Winkler foundation. Acta Mech. 224(11), 2833–2843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Volkov, S., Aizikovich, S., Wang, Y.-S., Fedotov, I.: Analytical solution of axisymmetric contact problem about indentation of a circular indenter into a soft functionally graded elastic layer. Acta Mech. Sin. 29(2), 196–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chidlow, S.J., Teodorescu, M.: Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distinct layers. Int. J. Eng. Sci. 70, 102–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. El-Borgi, S., Usman, S., Güler, M.A.: A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 51(25–26), 4462–4476 (2014)

    Article  Google Scholar 

  23. Vasiliev, A., Volkov, S., Aizikovich, S., Jeng, Y.R.: Axisymmetric contact problems of the theory of elasticity for inhomogeneous layers. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 94(9), 705–712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gun, H., Gao, X.-W.: Analysis of frictional contact problems for functionally graded materials using BEM. Eng. Anal. Bound. Elem. 38, 1–7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikbakht, A., Fallahi Arezoodar, A., Sadighi, M., Talezadeh, A.: Analyzing contact problem between a functionally graded plate of finite dimensions and a rigid spherical indenter. Eur. J. Mech. A/Solids 47, 92–100 (2014)

    Article  Google Scholar 

  26. Yan, J., Li, X.: Double receding contact plane problem between a functionally graded layer and an elastic layer. Eur. J. Mech. A/Solids 53, 143–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krenev, L.I., Aizikovich, S.M., Tokovyy, Y.V., Wang, Y.-C.: Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space. Int. J. Solids Struct. 59, 18–28 (2015)

    Article  Google Scholar 

  28. Liu, T.-J., Zhang, C., Wang, Y.-S., Xing, Y.-M.: The axisymmetric stress analysis of double contact problem for functionally graded materials layer with arbitrary graded materials properties. Int. J. Solids Struct. 96, 229–239 (2016)

    Article  Google Scholar 

  29. Çömez, İ., El-Borgi, S., Kahya, V., Erdöl, R.: Receding contact problem for two-layer functionally graded media indented by a rigid punch. Acta Mech. 227(9), 2493–2504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alinia, Y., Beheshti, A., Guler, M.A., El-Borgi, S., Polycarpou, A.A.: Sliding contact analysis of functionally graded coating/substrate system. Mech. Mater. 94, 142–155 (2016)

    Article  Google Scholar 

  31. Çömez, İ.: Frictional moving contact problem for a layer indented by a rigid cylindrical punch. Arch. Appl. Mech. 87(12), 1993–2002 (2017)

    Article  Google Scholar 

  32. Yan, J., Mi, C.: On the receding contact between an inhomogeneously coated elastic layer and a homogeneous half-plane. Mech. Mater. 112, 18–27 (2017)

    Article  Google Scholar 

  33. Comez, I., Yilmaz, K.B., Güler, M.A., Yildirim, B.: On the plane frictional contact problem of a homogeneous orthotropic layer loaded by a rigid cylindrical stamp. Arch. Appl. Mech. 89(7), 1403–1419 (2019)

    Article  Google Scholar 

  34. Balci, M.N., Dag, S.: Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch. Int. J. Solids Struct. 161, 267–281 (2019)

    Article  Google Scholar 

  35. Çömez, I., El-Borgi, S.: Contact problem of a graded layer supported by two rigid punches. Arch. Appl. Mech. 88(10), 1893–1903 (2018)

    Article  Google Scholar 

  36. Wagih, A., Attia, M.A., AbdelRahman, A.A., Bendine, K., Sebaey, T.A.: On the indentation of elastoplastic functionally graded materials. Mech. Mater. 129, 169–188 (2019)

    Article  Google Scholar 

  37. Öner, E., Adiyaman, G., Birinci, A.: Continuous contact problem of a functionally graded layer resting on an elastic half-plane. Arch. Mech. 69(1) (2017)

  38. Civelek, M.B., Erdogan, F., Cakiroglu, A.O.: Interface separation for an elastic layer loaded by a rigid stamp. Int. J. Eng. Sci. 16(9), 669–679 (1978)

    Article  MATH  Google Scholar 

  39. Çakıroğlu, A.O.: Elastik Yarım Düzleme Oturan Plaklarda Temas Problemi. Associate Professorship Thesis, Karadeniz Technical University, Trabzon (1979)

  40. Erdogan, F., Gupta, G.D., Cook, T.: Numerical Solution of Singular Integral Equations: Methods of Analysis and Solutions of Crack Problems, pp. 368–425. Springer, Berlin (1973)

    Book  Google Scholar 

  41. Civelek, M.B., Erdogan, F.: Interface separation in a frictionless contact problem for an elastic layer. J. Appl. Mech. 43(1), 175–177 (1976)

    Article  Google Scholar 

  42. Gecit, M.R.: A tensionless contact without friction between an elastic layer and an elastic foundation. Int. J. Solids Struct. 16(5), 387–396 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Öner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Original article has been corrected: Figs. 5, 6, 8 and 10 has been corrected.

Appendix

Appendix

$$\begin{aligned} A_{1}= & {} [-e^{hn_{1} }\bar{p}\left( -1+\kappa _{1} \right) (-4F\xi \left( \left( -e^{hn_{2}} +e^{hn_{4}} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \left( e^{hn_{3}}-e^{hn_{4}} \right) D_{4} m_{2} \\ +\left( e^{hn_{2}}-e^{hn_{3}} \right) D_{2} m_{4} \\ \end{array}} \right) \right) \nonumber \\&+\left( e^{hn_{2}}-e^{hn_{3}} \right) C_{4} D_{2} D_{3} \left( 1+\kappa _{2} \right) -\left( e^{hn_{2}}-e^{hn_{4}} \right) C_{3} D_{2} D_{4} \left( 1+\kappa _{2} \right) +\left( e^{hn_{3}}-e^{hn_{4} } \right) \nonumber \\&C_{2} D_{3} D_{4} \left( 1+\kappa _{2} \right) )\,-4e^{hn_{1}}F\varphi \left( {\begin{array}{l} e^{hn_{4}}\left( e^{hn_{2}}-e^{hn_{3}} \right) C_{4} D_{2} D_{3} \\ -\left( {\begin{array}{l} e^{hn_{3} }\left( e^{hn_{2} }-e^{hn_{4} } \right) C_{3} D_{2} \\ -e^{hn_{2} }\left( e^{hn_{3} }-e^{hn_{4} } \right) C_{2} D_{3} \\ \end{array}} \right) D_{4} \\ \end{array}} \right) \mu _{0} ]\,/\varDelta \end{aligned}$$
(A.1)
$$\begin{aligned} A_{2}= & {} [\text{ e}^{hn_{2} }(\bar{p} \left( -1+\kappa _{1} \right) (-4F\xi \left( {\begin{array}{l} -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{3} \\ +D_{3} \left( \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} m_{4} \right) \\ \end{array}} \right) \nonumber \\&+\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) C_{4} D_{1} D_{3} \left( 1+\kappa _{2} \right) -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{3} D_{1} D_{4} \left( 1+\kappa _{2} \right) +\left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) \nonumber \\&C_{1} D_{3} D_{4} \left( 1+\kappa _{2} \right) )+4F\varphi \left( {\begin{array}{l} \text{ e}^{hn_{4} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) C_{4} D_{1} D_{3} \\ -\left( {\begin{array}{l} \text{ e}^{hn_{3} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{3} D_{1} \\ -\text{ e}^{hn_{1} }\left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) C_{1} D_{3} \\ \end{array}} \right) D_{4} \\ \end{array}} \right) \mu _{0} )]/\Delta \end{aligned}$$
(A.2)
$$\begin{aligned} A_{3}= & {} [\text{ e}^{hn_{3} }(-\bar{p} \left( -1+\kappa _{1} \right) (-4F\xi \left( {\begin{array}{l} -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{2} \\ +D_{2} \left( \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{4} \right) \\ \end{array}} \right) \nonumber \\&+\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) C_{4} D_{1} D_{2} \left( 1+\kappa _{2} \right) -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{2} D_{1} D_{4} \left( 1+\kappa _{2} \right) +\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) \nonumber \\&C_{1} D_{2} D_{4} \left( 1+\kappa _{2} \right) )-4F\varphi \left( {\begin{array}{l} \text{ e}^{hn_{4} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) C_{4} D_{1} D_{2} \\ -\left( {\begin{array}{l} \text{ e}^{hn_{2} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{2} D_{1} \\ -\text{ e}^{hn_{1} }\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) C_{1} D_{2} \\ \end{array}} \right) D_{4} \\ \end{array}} \right) \mu _{0} )]/\Delta \end{aligned}$$
(A.3)
$$\begin{aligned} A_{4}= & {} [\text{ e}^{hn_{4} }(\bar{p} \left( -1+\kappa _{1} \right) (-4F\xi \left( {\begin{array}{l} -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} D_{3} m_{2} \\ +D_{2} \left( \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) D_{3} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{3} \right) \\ \end{array}} \right) \nonumber \\&+\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) C_{3} D_{1} D_{2} \left( 1+\kappa _{2} \right) -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) C_{2} D_{1} D_{3} \left( 1+\kappa _{2} \right) +\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) \nonumber \\&C_{1} D_{2} D_{3} \left( 1+\kappa _{2} \right) )+4F\varphi \left( {\begin{array}{l} \text{ e}^{hn_{3} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) C_{3} D_{1} D_{2} \\ -\left( {\begin{array}{l} \text{ e}^{hn_{2} }\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) C_{2} D_{1} \\ -\text{ e}^{hn_{1} }\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) C_{1} D_{2} \\ \end{array}} \right) D_{3} \\ \end{array}} \right) \mu _{0} )]/\Delta \end{aligned}$$
(A.4)
$$\begin{aligned} B_{1}= & {} [-\frac{1}{\xi }\text{ e}^{h\xi }\left( -1+2h\xi +\kappa _{2} \right) (\xi \bar{p}(C_{4} \left( -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} D_{3} m_{2} +D_{2} \left( {\begin{array}{l} \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) D_{3} m_{1} \\ +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{3} \\ \end{array}} \right) \right) \nonumber \\&-C_{3} \left( -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{2} +D_{2} \left( \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{4} \right) \right) \nonumber \\&+C_{2} \left( -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{3} +D_{3} \left( \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} m_{4} \right) \right) \nonumber \\&-C_{1} (-\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) D_{2} D_{4} m_{3} +D_{3} \left( \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) D_{4} m_{2} +\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) D_{2} m_{4} \right) )) \nonumber \\&\left( -1+\kappa _{1} \right) +\varphi (-C_{3} \left( {\begin{array}{l} \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) C_{4} D_{1} D_{2} \\ +\left( \begin{array}{l} \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{2} D_{1} \\ -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) C_{1} D_{2} \\ \end{array} \right) D_{4} \\ \end{array}} \right) \nonumber \\&+D_{3} \left( {\begin{array}{l} -\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{1} C_{4} D_{2} \\ +C_{2} \left( {\begin{array}{l} \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) C_{4} D_{1} \\ -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) C_{1} D_{4} \\ \end{array}} \right) \\ \end{array}} \right) )\mu _{0} )]/\Delta \end{aligned}$$
(A.5)
$$\begin{aligned} B_{2}= & {} [-2\text{ e}^{h\xi }(\xi \bar{p}(C_{4} \left( -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} D_{3} m_{2} +D_{2} \left( \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) D_{3} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{3} \right) \right) \nonumber \\&-C_{3} (-\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{2} +D_{2} \left( \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) D_{1} m_{4} \right) ) \nonumber \\&+C_{2} \left( -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) D_{1} D_{4} m_{3} +D_{3} \left( \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) D_{4} m_{1} +\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) D_{1} m_{4} \right) \right) \nonumber \\&-C_{1} \left( -\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) D_{2} D_{4} m_{3} +D_{3} \left( \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) D_{4} m_{2} +\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) D_{2} m_{4} \right) \right) )\left( -1+\kappa _{1} \right) \nonumber \\&+\varphi (-C_{3} \left( \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) C_{4} D_{1} D_{2} +\left( {\begin{array}{l} \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{2} D_{1} \\ -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) C_{1} D_{2} \\ \end{array}} \right) D_{4} \right) \nonumber \\&+D_{3} \left( {\begin{array}{l} -\left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{4} } \right) C_{1} C_{4} D_{2} \\ +C_{2} \left( {\begin{array}{l} \left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{3} } \right) \left( \text{ e}^{hn_{2} }-\text{ e}^{hn_{4} } \right) C_{4} D_{1} \\ -\left( \text{ e}^{hn_{1} }-\text{ e}^{hn_{2} } \right) \left( \text{ e}^{hn_{3} }-\text{ e}^{hn_{4} } \right) C_{1} D_{4} \\ \end{array}} \right) \\ \end{array}} \right) )\mu _{0} )]/\Delta \end{aligned}$$
(A.6)
$$\begin{aligned} \bar{p}= & {} \int \limits _0^a {p(t)\cos (\xi t)dt} \end{aligned}$$
(A.7)
$$\begin{aligned} \varphi= & {} \int \limits _b^c {\varphi (t)\sin (\xi t)dt} \end{aligned}$$
(A.8)
$$\begin{aligned} \Delta= & {} (4\text{ e}^{hn_{4} }F\xi C_{4} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} } \right) } \right) \nonumber \\&+C_{1} (-4\text{ e}^{hn_{1} }F\xi \left( {-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} } \right) } \right) \nonumber \\&+\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{4} D_{2} D_{3} \left( {1+\kappa _{2} } \right) )C_{3} (-4\text{ e}^{hn_{3} }F\xi \left( {\begin{array}{l} -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} \\ +D_{2} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} \\ \end{array}} \right) \\ \end{array}} \right) \,\, \nonumber \\&+\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{4} D_{1} D_{2} \left( {1+\kappa _{2} } \right) \,+\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{2} D_{1} D_{4} \left( {1+\kappa _{2} } \right) \, \nonumber \\&-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{1} D_{2} D_{4} \left( {1+\kappa _{2} } \right) )\,+C_{2} (4\text{ e}^{hn_{2} }F\xi \left( {\begin{array}{l} -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} \\ +D_{3} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} \\ \end{array}} \right) \\ \end{array}} \right) \, \nonumber \\&-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{4} D_{1} D_{3} \left( {1+\kappa _{2} } \right) +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) \,C_{1} D_{3} D_{4} \left( {1+\kappa _{2} } \right) ))\mu _{0} \,\,\,\, \end{aligned}$$
(A.9)
$$\begin{aligned} N_{1} (x,t)= & {} \int \limits _0^\infty [ (\{-16F\frac{z}{h^{2}}^{2}(D_{3} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} m_{2} \\ +\left( {\begin{array}{l} \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{2} m_{1} \\ -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{1} m_{2} \\ \end{array}} \right) m_{4} \\ \end{array}} \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-m_{3} \left( {\begin{array}{l} -\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} \\ +D_{2} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{1} m_{4} \\ \end{array}} \right) \\ \end{array}} \right) )\left( {\kappa _{1} -1} \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\frac{z}{h}(C_{4} \left( {-\text{ e}^{hn_{2} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\begin{array}{l} \text{ e}^{hn_{1} }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} \\ +\text{ e}^{hn_{3} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{3} \left( {-\text{ e}^{hn_{2} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\begin{array}{l} \text{ e}^{hn_{1} }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\text{ e}^{hn_{4} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+C_{2} \left( {-\text{ e}^{hn_{3} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \text{ e}^{hn_{1} }\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\text{ e}^{hn_{4} }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{1} \left( {-\text{ e}^{hn_{3} }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \text{ e}^{hn_{2} }\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} \\ +\text{ e}^{hn_{4} }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} \\ \end{array}} \right) } \right) ) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\kappa _{1} -1} \right) \left( {1+\kappa _{2} } \right) \}/\Lambda ^{*})-1]\,[\sin \frac{z}{h}(t-x)]dz\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.10)
$$\begin{aligned} N_{2} (x,t)= & {} \int \limits _0^\infty [ \{4F\frac{z}{h}(C_{4} \left( {-\text{ e}^{h\left( {n_{2} +n_{4} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\begin{array}{l} \text{ e}^{h\left( {n_{1} +n_{4} } \right) }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} \\ +\text{ e}^{h\left( {n_{3} +n_{4} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{3} \left( {-\text{ e}^{h\left( {n_{2} +n_{3} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\begin{array}{l} \text{ e}^{h\left( {n_{1} +n_{3} } \right) }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\text{ e}^{h\left( {n_{3} +n_{4} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+C_{2} \left( {-\text{ e}^{h\left( {n_{2} +n_{3} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \text{ e}^{h\left( {n_{1} +n_{2} } \right) }\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\text{ e}^{h\left( {n_{2} +n_{4} } \right) }\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{1} \left( {-\text{ e}^{h\left( {n_{1} +n_{3} } \right) }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \text{ e}^{h\left( {n_{1} +n_{2} } \right) }\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} \\ +\text{ e}^{h\left( {n_{1} +n_{4} } \right) }\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} \\ \end{array}} \right) } \right) )\mu _{0} \}/\Lambda ] \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,[\cos \frac{z}{h}(t+x)-\cos \frac{z}{h}(t-x)]dz\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.11)
$$\begin{aligned} \Lambda= & {} 4\text{ e}^{hn_{4} }F\xi C_{4} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} } \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,-4\text{ e}^{hn_{3} }F\xi C_{3} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,+4\text{ e}^{hn_{2} }F\xi C_{2} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,-4\text{ e}^{hn_{1} }F\xi C_{1} \left( {-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,+(\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{3} C_{4} D_{1} D_{2} +\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{4} D_{1} D_{3} \nonumber \\&\,\,\,\,\,\,\,\,\,+\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{4} D_{2} D_{3} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{3} D_{1} D_{4} \nonumber \\&\,\,\,\,\,\,\,\,\,+\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{3} D_{2} D_{4} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{2} D_{3} D_{4} )\left( {1+\kappa _{2} } \right) .\,\,\,\,\,\,\,\, \end{aligned}$$
(A.12)
$$\begin{aligned} \Lambda ^{*}= & {} (1+\kappa _{1} )\Lambda \end{aligned}$$
(A.13)
$$\begin{aligned} N_{3} (x,t)= & {} \int \limits _0^\infty {[\{[} +\text{ e}^{-h\beta }F(C_{3} (\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{4} D_{1} D_{2} +(\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{2} D_{1} \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \,\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{1} D_{2} )D_{4} )-D_{3} (-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{4} D_{2} \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+C_{2} (\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{4} D_{1} -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{1} D_{4} )))\mu _{0} \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left( {1+\kappa _{2} } \right) \mu _{0} +\text{ e}^{h\beta }\left( {1+\kappa _{1} } \right) \mu _{2} } \right) ]/\mathrm{Z}\}-1]\left[ {\sin \frac{z}{h}(t+x)+\sin \frac{z}{h}(t-x)} \right] dz\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.14)
$$\begin{aligned} N_{4} (x,t)= & {} \int \limits _0^\infty {[\{[} -4\text{ e}^{-h\beta }F\frac{z}{h}(C_{4} \left( {\begin{array}{l} -\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} \\ +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} } \right) \\ \end{array}} \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{3} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} \\ +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} \\ \end{array}} \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+C_{2} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-C_{1} \left( {-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\begin{array}{l} \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} \\ +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} \\ \end{array}} \right) } \right) )\left( {\kappa _{1} -1} \right) ]/\mathrm{T}\}] \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\cos \frac{z}{h}(t-x)} \right] dz\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.15)
$$\begin{aligned} \varpi= & {} \frac{(1+\kappa _{2} )\mu _{0} e^{-\beta h}}{(1+\kappa _{1} )\mu _{2} } \end{aligned}$$
(A.16)
$$\begin{aligned} \mathrm{Z}= & {} (4\text{ e}^{hn_{4} }F\frac{z}{h}C_{4} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} } \right) } \right) \nonumber \\&\,\,\,\,\,-4\text{ e}^{hn_{3} }F\frac{z}{h}C_{3} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,+4\text{ e}^{hn_{2} }F\frac{z}{h}C_{2} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,\,\,-4\text{ e}^{hn_{1} }F\frac{z}{h}C_{1} \left( {-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} } \right) } \right) ) \nonumber \\&\,\,\,\,\,\left( {-1+\kappa _{1} } \right) \mu _{2} \,+(\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{3} C_{4} D_{1} D_{2} +\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{4} D_{1} D_{3} \nonumber \\&\,\,\,\,\,+\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{4} D_{2} D_{3} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{3} D_{1} D_{4} +\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \nonumber \\&\,\,\,\,\,\,\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{3} D_{2} D_{4} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{2} D_{3} D_{4} )\left( {\kappa _{1} -1} \right) \left( {\kappa _{2} +1} \right) \mu _{2} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.17)
$$\begin{aligned} \mathrm{T}= & {} (4\text{ e}^{hn_{4} }F\frac{z}{h}C_{4} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} D_{3} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{3} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{3} } \right) } \right) \nonumber \\&\,\,\,\,-4\text{ e}^{hn_{3} }F\frac{z}{h}C_{3} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{2} +D_{2} \left( {\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,+4\text{ e}^{hn_{2} }F\frac{z}{h}C_{2} \left( {-\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) D_{1} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{1} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{3} }} \right) D_{1} m_{4} } \right) } \right) \nonumber \\&\,\,\,-4\text{ e}^{hn_{1} }F\frac{z}{h}C_{1} \left( {-\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) D_{2} D_{4} m_{3} +D_{3} \left( {\left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) D_{4} m_{2} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) D_{2} m_{4} } \right) } \right) ) \nonumber \\&\,\,\,\left( {\kappa _{1} -1} \right) +(\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{3} C_{4} D_{1} D_{2} +\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \,\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{4} D_{1} D_{3} \nonumber \\&\,\,\,+\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{4} D_{2} D_{3} +\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{3} }} \right) \left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{4} }} \right) C_{2} C_{3} D_{1} D_{4} +\left( {-\text{ e}^{hn_{1} }+\text{ e}^{hn_{3} }} \right) \nonumber \\&\,\,\,\,\left( {\text{ e}^{hn_{2} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{3} D_{2} D_{4} +\left( {\text{ e}^{hn_{1} }-\text{ e}^{hn_{2} }} \right) \left( {\text{ e}^{hn_{3} }-\text{ e}^{hn_{4} }} \right) C_{1} C_{2} D_{3} D_{4} )\,\left( {\kappa _{1} -1} \right) \left( {\kappa _{2} +1} \right) \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öner, E., Birinci, A. Investigation of the solution for discontinuous contact problem between a functionally graded (FG) layer and homogeneous half-space. Arch Appl Mech 90, 2799–2819 (2020). https://doi.org/10.1007/s00419-020-01750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01750-y

Keywords

Navigation