Skip to main content
Log in

Study on Effect of the Solvothermal Temperature on Synthesis of 3D Hierarchical TiO2 Nanoflower and Its Application as Photocatalyst in Degradation of Organic Pollutants in Wastewater

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

3D TiO2 hierarchical nanoflower was synthesized by template-free solvothermal alcoholysis of TiCl3 with the variation of reaction temperatures (130–200 °C). XRD, SEM, BET surface analysis, UV–VIS DR spectroscopy, FTIR analysis were performed to characterize the prepared TiO2 samples. Photocatalytic degradation of model organic pollutant such as methylene blue (MB) dye was investigated using all prepared samples under UV light illumination. Results show that reaction temperature directly affects the anatase phase content of TiO2 samples, crystal structures, crystalline size, particle size, surface area, pore structure, UV absorption capacity, and band gap of the synthesized samples. The sample prepared at reaction temperature 150 °C seems to be most efficient photocatalyst for degradation of MB with rate constant 0.0287 min−1 [~ 20.5 times higher than the sample prepared at 130 °C (0.0014 min−1) and 6.83 times higher than the sample prepared at 200 °C, (0.0042 min−1)]. Optimization of reaction temperature at 150 °C was performed by testing different properties of the synthesized TiO2 nanoflower such as its surface area, organized morphology, bimodal pore-size distribution, and porosity which were synthesized at different solvothermal temperatures (130–200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Literathy, P.: Institute for Water Pollution Control. In: Rijtema, E.P., Eliáš, V. (eds.) Regional Approaches to Water Pollution in the Environment, pp. 21–22. Springer, Cham (1996). https://doi.org/10.1007/978-94-009-0345-6

    Chapter  Google Scholar 

  2. Parris, K.: Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int. J. Water Resour. Dev. 27, 33–52 (2011). https://doi.org/10.1080/07900627.2010.531898

    Article  Google Scholar 

  3. Lim, T.T.; Goei, R.: Combined photocatalysis separation processes for water treatment using hybrid photocatalytic membrane reactors. In: Dionysiou, D.D.; Li Puma, G.; Ye, J.; Schneider, J.; Bahnemann, D. (eds.) Photocatalysis: Applications, pp. 130–156. The Royal Society of Chemistry, Cambridge (2016). https://doi.org/10.1039/9781782627104

  4. Clara, M.; Strenn, B.; Ausserleitner, M.; Kreuzinger, N.: Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci. Technol. 50, 29–36 (2004). https://doi.org/10.2166/wst.2004.0305

    Article  Google Scholar 

  5. Gaya, I.U.: Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7775-0

    Book  Google Scholar 

  6. Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  7. Hanaor, D.A.H.; Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  Google Scholar 

  8. Herrmann, J.M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53(1), 115–129 (1999). https://doi.org/10.1016/S0920-5861(99)00107-8

    Article  Google Scholar 

  9. Zhang, H.; Zhang, H.; Zhu, P.; Huang, F.: Morphological effect in photocatalytic degradation of direct blue over mesoporous TiO2 catalysts. ChemistrySelect 2, 3282–3288 (2017). https://doi.org/10.1002/slct.201601346

    Article  Google Scholar 

  10. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C.; Di, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C.: Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J. Photochem. Photobiol. C: Photochem. Rev. 25, 11–29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  Google Scholar 

  11. Andronic, L.; Andrasi, D.; Enesca, A.; Visa, M.; Duta, A.: The influence of titanium dioxide phase composition on dyes photocatalysis. J. Sol-Gel. Sci. Technol. 58, 201–208 (2011). https://doi.org/10.1007/s10971-010-2378-3

    Article  Google Scholar 

  12. Park, H.; Park, Y.; Kim, W.; Choi, W.: Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C: Photochem. Rev. 15, 1–20 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  Google Scholar 

  13. Sajan, C.P.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Cao, S.: TiO2 nanosheets with exposed 001 facets for photocatalytic applications. Nano Res. 9, 3–27 (2016). https://doi.org/10.1007/s12274-015-0919-3

    Article  Google Scholar 

  14. Wang, W.; Wang, Z.; Liu, J.; Luo, Z.; Suib, S.L.; He, P.; Ding, G.; Zhang, Z.; Sun, L.: Single-step one-pot synthesis of TiO2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Sci. Rep. 7, 46610 (2017). https://doi.org/10.1038/srep46610

    Article  Google Scholar 

  15. Du, J.; Chen, W.; Zhang, C.; Liu, Y.; Zhao, C.; Dai, Y.: Hydrothermal synthesis of porous TiO2 microspheres and their photocatalytic degradation of gaseous benzene. Chem. Eng. J. 170, 53–58 (2011). https://doi.org/10.1016/j.cej.2011.03.027

    Article  Google Scholar 

  16. Ma, L.; Wang, G.; Jiang, C.; Bao, H.; Xu, Q.: Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light. Appl. Surface Sci. 430, 263–272 (2018). https://doi.org/10.1016/j.apsusc.2017.07.282

    Article  Google Scholar 

  17. Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C.L.; Wang, S.; Fan, Z.: Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces. 4, 3944–3950 (2012). https://doi.org/10.1021/am300772t

    Article  Google Scholar 

  18. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998). https://doi.org/10.1021/la9713816

    Article  Google Scholar 

  19. Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717–720 (2002). https://doi.org/10.1021/nl025541w

    Article  Google Scholar 

  20. Antonelli, D.M.; Ying, J.Y.: Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew. Chem. Int. Ed. Engl. 34, 2014–2017 (1995). https://doi.org/10.1002/anie.199520141

    Article  Google Scholar 

  21. Ramakrishnan, V.M.; Natarajan, M.; Santhanam, A.; Asokan, V.; Velauthapillai, D.: Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Mater. Res. Bull. 97, 351–360 (2018). https://doi.org/10.1016/j.materresbull.2017.09.017

    Article  Google Scholar 

  22. Yang, H.G.; Liu, G.; Qiao, S.Z.; Sun, C.H.; Jin, Y.G.; Smith, S.C.; Zou, J.; Cheng, H.M.; Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131, 4078–4083 (2009). https://doi.org/10.1021/ja808790p

    Article  Google Scholar 

  23. Endrödi, B.; Kecsenovity, E.; Rajeshwar, K.; Janáky, C.: One-step electrodeposition of nanocrystalline TiO2 films with enhanced photoelectrochemical performance and charge storage. ACS Appl. Energy Mater. 1, 851–858 (2018). https://doi.org/10.1021/acsaem.7b00289

    Article  Google Scholar 

  24. Cheng, H.; Wang, J.; Zhao, Y.; Han, X.: Effect of phase composition{,} morphology{,} and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Adv. 4, 47031–47038 (2014). https://doi.org/10.1039/C4RA05509H

    Article  Google Scholar 

  25. Li, D.; Song, H.; Meng, X.; Shen, T.; Sun, J.; Han, W.; Wang, X.: Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10, 1–14 (2020). https://doi.org/10.3390/nano10030546

    Article  Google Scholar 

  26. de Luna, M.D.G.; Garcia-Segura, S.; Mercado, C.H.; Lin, Y.-T.; Lu, M.-C.: Doping TiO2 with CuSO4 enhances visible light photocatalytic activity for organic pollutant degradation. Environ. Sci. Pollut. Res. 27, 24604–24613 (2020). https://doi.org/10.1007/s11356-019-05789-5

    Article  Google Scholar 

  27. Tian, G.; Chen, Y.; Zhou, W.; Pan, K.; Tian, C.; Huang, X.R.; Fu, H.: 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm 13, 2994–3000 (2011). https://doi.org/10.1039/c0ce00851f

    Article  Google Scholar 

  28. Liu, L.; Liu, H.; Zhao, Y.P.; Wang, Y.; Duan, Y.; Gao, G.; Ge, M.; Chen, W.: Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol. 42, 2342–2348 (2008). https://doi.org/10.1021/es070980o

    Article  Google Scholar 

  29. Wu, L.; Qiu, Y.; Xi, M.; Li, X.; Cen, C.: Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. New J. Chem. 39, 4766–4773 (2015). https://doi.org/10.1039/C5NJ00373C

    Article  Google Scholar 

  30. Fang, B.; Bonakdarpour, A.; Reilly, K.; Xing, Y.; Taghipour, F.; Wilkinson, D.P.: Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. ACS Appl. Mater. Interfaces. 6, 15488–15498 (2014). https://doi.org/10.1021/am504128t

    Article  Google Scholar 

  31. Harris, J.; Silk, R.; Smith, M.; Dong, Y.; Chen, W.-T.; Waterhouse, G.I.N.: Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation. ACS Omega. (2020). https://doi.org/10.1021/acsomega.0c02142

    Article  Google Scholar 

  32. Di Fonzo, F.; Casari, C.S.; Russo, V.; Brunella, M.F.; Li Bassi, A.; Bottani, C.E.: Hierarchically organized nanostructured TiO2 for photocatalysis applications. Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/1/015604

    Article  Google Scholar 

  33. Zhu, T.; Li, J.; Wu, Q.: Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl. Mater. Interfaces. 3, 3448–3453 (2011). https://doi.org/10.1021/am2006838

    Article  Google Scholar 

  34. Bian, Z.; Zhu, J.; Wang, J.; Xiao, S.; Nuckolls, C.; Li, H.: Multitemplates for the hierarchical synthesis of diverse inorganic materials. J. Am. Chem. Soc. 134, 2325–2331 (2012). https://doi.org/10.1021/ja210270m

    Article  Google Scholar 

  35. Bian, Z.; Zhu, J.; Li, H.: Solvothermal alcoholysis synthesis of hierarchical TiO2 with enhanced activity in environmental and energy photocatalysis. J. Photochem. Photobiol., C 28, 72–86 (2016). https://doi.org/10.1016/j.jphotochemrev.2016.06.002

    Article  Google Scholar 

  36. Cassiers, K.; Linssen, T.; Mathieu, M.; Bai, Y.Q.; Zhu, H.Y.; Cool, P.; Vansant, E.F.: Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability. J. Phys. Chem. B 108, 3713–3721 (2004). https://doi.org/10.1021/jp036830r

    Article  Google Scholar 

  37. Bagheri, S.; Mohd Hir, Z.A.; Yousefi, A.T.; Abdul Hamid, S.B.: Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous Mesoporous Mater. 218, 206–222 (2015). https://doi.org/10.1016/j.micromeso.2015.05.028

    Article  Google Scholar 

  38. Yu, J.; Su, Y.; Cheng, B.: Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv. Func. Mater. 17, 1984–1990 (2007). https://doi.org/10.1002/adfm.200600933

    Article  Google Scholar 

  39. Ashton, J.F.: Some aspects of the solution chemistry of titanium (III). Some aspects of the solution chemistry of titanium (III). (1977) https://eprints.utas.edu.au/19394/1/whole_AshtonJohnFrederick1977_thesis.pdf. Accessed 8 Aug 2020

  40. Cassaignon, S.; Koelsch, M.; Jolivet, J.P.: From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): thermohydrolysis and oxidation in aqueous medium. J. Phys. Chem. Solids 68, 695–700 (2007). https://doi.org/10.1016/j.jpcs.2007.02.020

    Article  Google Scholar 

  41. Kavan, L.; O’Regan, B.; Kay, A.; Grätzel, M.: Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 346, 291–307 (1993). https://doi.org/10.1016/0022-0728(93)85020-H

    Article  Google Scholar 

  42. Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H.: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790–7791 (2004). https://doi.org/10.1021/ja048820p

    Article  Google Scholar 

  43. Tan, B.; Zhang, Y.; Long, M.: Large-scale preparation of nanoporous TiO2 film on titanium substrate with improved photoelectrochemical performance. Nanoscale Res. Lett. 9, 1–6 (2014). https://doi.org/10.1186/1556-276X-9-190

    Article  Google Scholar 

  44. Li, J.-G.: TiO2 Nanocrystals: phase selection and morphology control. Int. J. Mater. Sci. Eng. 1, 5–7 (2013). https://doi.org/10.12720/ijmse.1.1.5-7

    Article  Google Scholar 

  45. Danilchenko, S.N.; Kukharenko, O.G.; Moseke, C.; Protsenko, I.Y.; Sukhodub, L.F.; Sulkio-Cleff, B.: Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst. Res. Technol. 37, 1234–1240 (2002). https://doi.org/10.1002/1521-4079(200211)37:11 < 1234::AID-CRAT1234 > 3.0.CO;2-X

  46. Langford, J.I.; Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  Google Scholar 

  47. Zhang, H.; Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B. 104, 3481–3487 (2000). https://doi.org/10.1021/jp000499j

    Article  Google Scholar 

  48. Fagerlund, G.: Determination of specific surface by the BET method. Matériaux et Constructions 6, 239–245 (1973). https://doi.org/10.1007/BF02479039

    Article  Google Scholar 

  49. Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M.: Characterization of porous solids and powders: surface area, pore size and density. Springer, Cham (2012)

    Google Scholar 

  50. Klobes, P.; Meyer, K.; Munro, R.: Porosity and specific surface area measurements for solid materials. NIST, U. S. Government Printing Office, Washington (2006). https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication960-17.pdf

  51. Bardestani, R.; Patience, G.S.; Kaliaguine, S.: Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 97, 2781–2791 (2019). https://doi.org/10.1002/cjce.23632

    Article  Google Scholar 

  52. Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J.: Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci. 278, 270–275 (2004). https://doi.org/10.1016/j.jcis.2004.06.015

    Article  Google Scholar 

  53. Chadwick, M.D.; Goodwin, J.W.; Lawson, E.J.; Mills, P.D.A.; Vincent, B.: Surface charge properties of colloidal titanium dioxide in ethylene glycol and water. Colloids Surf. A 203, 229–236 (2002). https://doi.org/10.1016/S0927-7757(01)01101-3

    Article  Google Scholar 

  54. Kosmulski, M.: A literature survey of the differences between the reported isoelectric points and their discussion. Colloids Surf. A 222, 113–118 (2003). https://doi.org/10.1016/S0927-7757(03)00240-1

    Article  Google Scholar 

  55. Herrmann, J.M.: Fundamentals and misconceptions in photocatalysis. J. Photochem. Photobiol., A 216, 85–93 (2010). https://doi.org/10.1016/j.jphotochem.2010.05.015

    Article  Google Scholar 

  56. Herrmann, J.M.: Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B 99, 461–468 (2010). https://doi.org/10.1016/j.apcatb.2010.05.012

    Article  Google Scholar 

  57. Madras, G.; McCoy, B.J.: Temperature effects on the transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci. 59, 2753–2765 (2004). https://doi.org/10.1016/j.ces.2004.03.022

    Article  Google Scholar 

  58. Zhang, H.; Banfield, J.F.: Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 8, 2073–2076 (1998). https://doi.org/10.1039/A802619J

    Article  Google Scholar 

  59. Ciavatta, L.; Ferri, D.; Riccio, G.: On the hydrolysis of the titanium(IV) ion in chloride media. Polyhedron 4, 15–22 (1985). https://doi.org/10.1016/S0277-5387(00)84215-1

    Article  Google Scholar 

  60. Aruna, S.T.; Tirosh, S.; Zaban, A.: Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388–2391 (2000). https://doi.org/10.1039/b001718n

    Article  Google Scholar 

  61. Kumar, S.G.; Rao, K.S.R.K.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale. 6, 11574–11632 (2014). https://doi.org/10.1039/c4nr01657b

    Article  Google Scholar 

  62. Zhang, H.; Banfield, J.F.: New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Miner. 84, 528–535 (1999). https://doi.org/10.2138/am-1999-0406

    Article  Google Scholar 

  63. Barnard, A.S.; Curtiss, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261–1266 (2005). https://doi.org/10.1021/nl050355m

    Article  Google Scholar 

  64. Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M.P.; Waychunas, G.A.; Banfield, J.F.: Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem. Trans. 4, 20–27 (2003). https://doi.org/10.1039/b309073f

    Article  Google Scholar 

  65. Finnegan, M.P.; Zhang, H.; Banfield, J.F.: Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 111, 1962–1968 (2007). https://doi.org/10.1021/jp063822c

    Article  Google Scholar 

  66. Livage, J.; Henry, M.; Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988). https://doi.org/10.1016/0079-6786(88)90005-2

    Article  Google Scholar 

  67. Wang, C.C.; Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113–3120 (1999). https://doi.org/10.1021/cm990180f

    Article  Google Scholar 

  68. Jolivet, J.P.; Henry, M.; Livage, J.; Bescher, E.: Metal Oxide Chemistry and Synthesis: From Solution to Solid State. Wiley, Hoboken (2000). ISBN 978-0-471-97056-9

    Google Scholar 

  69. Cheng, H.; Ma, J.; Zhao, Z.; Qi, L.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663–671 (1995). https://doi.org/10.1021/cm00052a010

    Article  Google Scholar 

  70. Gopal, M.; Moberly Chan, W.J.; De Jonghe, L.C.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001–6008 (1997). https://doi.org/10.1023/A:1018671212890

    Article  Google Scholar 

  71. Li, Y.; Liu, J.; Jia, Z.: Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process. Mater. Lett. 60, 1753–1757 (2006). https://doi.org/10.1016/j.matlet.2005.12.012

    Article  Google Scholar 

  72. Huang, X.; Pan, C.: Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J. Cryst. Growth 306, 117–122 (2007). https://doi.org/10.1016/j.jcrysgro.2007.04.018

    Article  Google Scholar 

  73. Byrappa, K.; Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53, 117–166 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001

    Article  Google Scholar 

  74. Antony, J.; Nutting, J.; Baer, D.R.; Meyer, D.; Sharma, A.; Qiang, Y.: Size-dependent specific surface area of nanoporous film assembled by core-shell iron nanoclusters. J. Nanomater. 2006, 1–4 (2006). https://doi.org/10.1155/JNM/2006/54961

    Article  Google Scholar 

  75. Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z.: Titanium dioxide: from engineering to applications. Catalysts 9, 1–32 (2019). https://doi.org/10.3390/catal9020191

    Article  Google Scholar 

  76. Herbert, D.C.; Jones, R.: Localized states in disordered systems. J. Phys. C: Solid State Phys. 4, 1145–1161 (1971). https://doi.org/10.1088/0022-3719/4/10/023

    Article  Google Scholar 

  77. Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F.: The pore structure of phosphoaluminate cement. Open J. Compos. Mater. 02, 104–112 (2012). https://doi.org/10.4236/ojcm.2012.23012

    Article  Google Scholar 

  78. Yu, J.; Wang, G.; Cheng, B.; Zhou, M.: Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B: Environ. 69, 171–180 (2007). https://doi.org/10.1016/j.apcatb.2006.06.022

    Article  Google Scholar 

  79. Niu, B.; Wang, X.; Wu, K.; He, X.; Zhang, R.: Mesoporous titanium dioxide: synthesis and applications in photocatalysis, energy and biology. Materials. 11, 1–23 (2018). https://doi.org/10.3390/ma11101910

    Article  Google Scholar 

  80. Escobedo-Morales, A.; Ruiz-López, I.I.; de Ruiz-Peralta, M.L.; Tepech-Carrillo, L.; Sánchez-Cantú, M.; Moreno-Orea, J.E.: Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon. 5, 1–19 (2019). https://doi.org/10.1016/j.heliyon.2019.e01505

    Article  Google Scholar 

  81. Kumar, P.M.; Badrinarayanan, S.; Sastry, M.: Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358, 122–130 (2000). https://doi.org/10.1016/S0040-6090(99)00722-1

    Article  Google Scholar 

  82. Okeke, G.; Hammond, R.B.; Joseph Antony, S.: Influence of size and temperature on the phase stability and thermophysical properties of anatase TiO2 nanoparticles: molecular dynamics simulation. J. Nanopart. Res. 15, 1–9 (2013). https://doi.org/10.1007/s11051-013-1584-7

    Article  Google Scholar 

  83. Linsebigler, A.L.; Lu, G.; Yates, J.T.: Photocatalysis on TiO2 surfaces: principles. Mechanisms Select. Results 95, 735–758 (1995). https://doi.org/10.1021/cr00035a013

    Article  Google Scholar 

  84. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  Google Scholar 

  85. Gnaser, H.; Savina, M.R.; Calaway, W.F.; Tripa, C.E.; Veryovkin, I.V.; Pellin, M.J.: Photocatalytic degradation of methylene blue on nanocrystalline TiO2: surface mass spectrometry of reaction intermediates. Int. J. Mass Spectrom. 245, 61–67 (2005). https://doi.org/10.1016/j.ijms.2005.07.003

    Article  Google Scholar 

  86. Jia, P.; Tan, H.; Liu, K.; Gao, W.: Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. Mater. Res. Bull. 102, 45–50 (2018). https://doi.org/10.1016/j.materresbull.2018.02.018

    Article  Google Scholar 

  87. Xiao, Q.; Ouyang, L.: Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem. Eng. J. 148, 248–253 (2009). https://doi.org/10.1016/j.cej.2008.08.024

    Article  Google Scholar 

  88. Carp, O.; Huisman, C.L.; Reller, A.: Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  Google Scholar 

  89. Barzykin, A.V.; Tachiya, M.: Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J. Phys. Chem. B. 106, 4356–4363 (2002). https://doi.org/10.1021/jp012957

    Article  Google Scholar 

  90. Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H.: Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal. Today 335, 78–90 (2019). https://doi.org/10.1016/j.cattod.2018.10.053

    Article  Google Scholar 

  91. Zhang, J.; Nosaka, Y.: Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C 118, 10824–10832 (2014). https://doi.org/10.1021/jp501214m

    Article  Google Scholar 

  92. Kakuma, Y.; Nosaka, A.Y.; Nosaka, Y.: Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys. Chem. Chem. Phys. 17, 18691–18698 (2015). https://doi.org/10.1039/c5cp02004b

    Article  Google Scholar 

  93. Nosaka, Y.; Nosaka, A.: Understanding hydroxyl radical (·OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359 (2016). https://doi.org/10.1021/acsenergylett.6b00174

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge NIT Durgapur for financial and other administrative support for this reach activity. The authors would also like to extend their heartiest thanks to the funding agency DST Govt. of India for supporting this research through the sponsored project under BRICS Multilateral Call 2017 (Project Grant No. DST/IMRCD/Pilot Call 2/Enviorganic/2018 (G) dated 28.03.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirok Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, K., Chaudhuri, H., Basu, S. et al. Study on Effect of the Solvothermal Temperature on Synthesis of 3D Hierarchical TiO2 Nanoflower and Its Application as Photocatalyst in Degradation of Organic Pollutants in Wastewater. Arab J Sci Eng 46, 6315–6331 (2021). https://doi.org/10.1007/s13369-020-04988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04988-4

Keywords

Navigation