Skip to main content
Log in

Experimental Investigation of Fast Pyrolysis of Isoberlina doka-Derived Sawdust for Bio-Oil Production

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fast pyrolysis is considered an emerging technology for biomass conversion into liquid oil. In this paper, the conversion of waste from Isoberlina doka tree processing into bio-oil using a bench-scale fixed bed reactor with a fluidized behavior within the bed zone has been investigated at temperatures of 400–500 °C and particle size ranges of < 0.5 and 0.5–1 mm. Reactor with the total height of 140 mm consisting of three zones with gas inlet diameter of 10 mm, reaction zone diameter of 70 mm, outlet diameter of 15 mm and a coupled detachable inlet with a diameter 15 mm for biomass loading was used for experimentation. Nitrogen was used as the carrier gas, and the products were biochar, bio-oil and non-condensable gas. Thermogravimetric and derivative thermal analysis (TG/DTA) was carried out in order to understand the thermal behavior of wood particles. Bio-oil produced was analyzed using the gas chromatography mass spectrometry and the Fourier transform infra-red spectrophotometry methodologies. TG/DTA analysis revealed an initial 30.639% mass loss which correlates to hardwood thermal characteristics. Bio-oil yield from bench-scale pyrolysis increased with increasing temperature. A maximum bio-oil yield of 49.84 wt % was observed at the particle size range of 0.5–1 mm, bed temperature of 500 °C and time of 30 min. Volatile generation was at the peak of 54.54% (0.002655 kg/min). However, changes in the chemical composition and functional groups of bio-oil with temperature of production suited it for different usage purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Garba, M.U.; Oloruntoba, M.J.; Isah, A.G.; Alhassan, M.: Production of solid fuel from rice straw through torrefaction process. Int. J. Sci. Eng. Investig. 37, 1–6 (2015)

    Google Scholar 

  2. Ensyn Corporation.: Renewable Fuel Oil (2011) [Online]. Retrieved from http://www.ensyn.com/products/fuel-products/pyrolysis-heating-oil/#. Accessed 14 Dec 2018

  3. Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.C.; Farahani, E.; Susanne, K.: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change 2014: Mitigation of Climate Change. 1454 (2014). https://doi.org/10.1017/cbo9781107415416

  4. Natural Resources Canada - About Renewable Energy (2016). Retrieved from http://www.nrcan.gc.ca/energy/renewable-electricity/7295#bio. Accessed 10 Sept 2018

  5. Rycroft, M.: Waste plastic to fuel oil: an under-exploited opportunity for energy generation. EE Publishers. (2017). Retrieved from http://www.ee.co.za/article/waste-plastic-fuel-oil-exploited-opportunity-energy-generation.html. Accessed 24 Oct 2018

  6. Oyebanji, J.A.; Okekunle, P.O.; Lasode, O.A.; Oyedepo, S.O.: Chemical composition of bio-oils produced by fast pyrolysis of two energy biomass. Biofuels (2017). https://doi.org/10.1080/17597269.2017.1284473

    Article  Google Scholar 

  7. Lenis, Y.A.; Perez, J.F.; Melgar, A.: Fixed bed gasification of Jacaranda Copaia wood: effect of packing factor and oxygen enriched air. Ind. Crop Prod. 84, 166–175 (2016). https://doi.org/10.1016/j.indcrop.2016.01.053

    Article  Google Scholar 

  8. Kuppens, T.; Van Dael, M.; Vanrepplen, K.; Carleef, R.; Yperman, J.; Schreurs, S.; Van Passel, S.: Techno-economic assessment of pyrolysis char production and application—a review. Chem. Eng. Trans. 37, 67–72 (2014). https://doi.org/10.3303/CET1437012

    Article  Google Scholar 

  9. Mehrabian, R.; Zahirovic, S.; Scharler, R.; Obernberger, I.; Kleditzsch, S.; Wirtz, S.; Scherer, V.; Lu, H.; Baxter, L.L.: A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process. Technol. 95, 96–108 (2012). https://doi.org/10.1016/j.fuproc.2011.11.021

    Article  Google Scholar 

  10. Contu, S.: Isoberlinia doka. IUCN Red List of Threatened Species Version 2014.3. International Union for Conservation of Nature. www.iucnredlist.org/pdflink.20090324. Retrieved 30 September 2018 (2012)

  11. Kumar, S.; Singh, R.K.: Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz. J. Chem. Eng. 28(4), 659–667 (2011). https://doi.org/10.1590/S0104-66322011000400011

    Article  Google Scholar 

  12. Chen, N.; Ren, J.; Ye, Z.; Zu, Q.; Liu, J.; Sun, S.: Study on vacuum pyrolysis of coffee industrial residue for bio-oil production. IOP Conf. Ser. Earth Environ. Sci. 59, 012065 (2017). https://doi.org/10.1088/1755-1315/59/1/012065

    Article  Google Scholar 

  13. Gronli, M.G.; Verhegyi, G.; Di Blaisi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41, 4201–4208 (2002). https://doi.org/10.1021/ie0201157

    Article  Google Scholar 

  14. Lu, H.; Ip, E.; Scott, J.; Foster, P.; Vickers, M.; Baxter, L.L.: Effects of particle shape and size on devolatilization of biomass particle. Fuel 89, 1156–1168 (2010). https://doi.org/10.1016/j.fuel.2008.10.023

    Article  Google Scholar 

  15. Isahak, W.N.R.W.; Hisham, M.W.M.; Yarmo, M.A.; Hin, T.Y.: A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 16(8), 5910–5923 (2012). https://doi.org/10.1016/j.rser.2012.05.039

    Article  Google Scholar 

  16. Akhtar, J.; Amin, N.S.: A review on the operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 16(7), 5101–5109 (2012). https://doi.org/10.1016/j.rser.2012.05.033

    Article  Google Scholar 

  17. Stefanidis, S.D.; Heracleous, E.; Patiaka, D.T.; Kolagiannis, K.G.; Michailof, C.M.; Lappas, A.A.: Optimization of bio-oil yields by demineralization of low-quality biomass. Biomass Bioenergy 83, 105–115 (2015). https://doi.org/10.1016/j.biombioe.2015.09.004

    Article  Google Scholar 

  18. Mourant, D.; Wang, Z.; He, M.; Wang, X.S.; Garcia- Perez, M.; Ling, K.; Li, C.: Malle wood fast pyrolysis: effect of alkali and alkali earth metallic species on the yield and composition of bio-oil. Fuel 90(9), 2915–2922 (2011). https://doi.org/10.1016/j.fuel.2011.04.033

    Article  Google Scholar 

  19. Mehrabian, R.; Shiehnejadhesar, A.; Scharler, R.; Obernberger, I.: Multi- physics modelling of packed bed biomass combustion. Fuel 122, 164–178 (2014). https://doi.org/10.1016/j.fuel.2014.01.027

    Article  Google Scholar 

  20. Anca-couce, A.: Reaction mechanisms and multi-scale modelling of Lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53, 41–79 (2016). https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  21. Gao, N.; Li, A.; Quan, C.; Du, L.; Duan, Y.: TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrol. 100, 26–32 (2013). https://doi.org/10.1016/j.jaap.2012.11.009

    Article  Google Scholar 

  22. Djokic, M.R.; Dijkmans, T.; Yildiz, G.; Prins, W.Van; Geem, K.M.: Quantitative analysis of crude and stabilized bio- oils by comprehensive two dimensional gas-chromatography. J. Chromatogr. A 1257, 131–140 (2012). https://doi.org/10.1018/j.chroma

    Article  Google Scholar 

  23. Negahdar, L.; Gonzalez-Quiroga, A.; Otyuskaya, D.; Toraman, H.E.; Liu, L.; Jastrzebski, J.T.B.H.; Van Geem, kM; Marin, G.B.; Thybaut, J.W.; Weckhuysen, B.M.: Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC–GC. ACS Sustain. Chem. Eng. 4, 4974–4985 (2016)

    Article  Google Scholar 

  24. Dewangan, A.K.: Co-Pyrolysis of Lignocellulose Biomass and Synthetic Polymer. Unpublished Project Report, Department of Chemical Engineering, National Institute of Technology, Rourkela, India (2014)

  25. Shen, D.K.; Gu, S.; Bridgewater, A.V.: Study on the pyrolytic behavior of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrol. 87, 199–206 (2010). https://doi.org/10.1016/j.jaap.2009.12.001

    Article  Google Scholar 

  26. Zhang, L.; Shen, C.; Liu, R.: GC–MS and FT-IR analysis of the bio-oil with addition of ethyl acetate during storage. Front. Energy Res. 2(3), 1–6 (2014). https://doi.org/10.3389/fenrg.2014.00003

    Article  Google Scholar 

  27. Vardon, D.R.; Sharma, B.K.; Scott, J.; Yu, G.; Wang, Z.; Schideman, L.; Zhang, Y.; Strathmann, T.J.: Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102, 8295–8303 (2011). https://doi.org/10.1016/j.biortech.2011.06.041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Petroleum Technology Development Fund in the framework of the Local Study Fellowship (PTDF/ED/LSS/MSC/OMJ/394/17). Special thanks are given to Prof. Jibril, Baba El-Yakubu and Dr. F. N. Dabai of the Department of Chemical Engineering, Ahmadu Bello University, Zaria, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Afolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moritiwon, O.J., Afolabi, E.A., Garba, M.U. et al. Experimental Investigation of Fast Pyrolysis of Isoberlina doka-Derived Sawdust for Bio-Oil Production. Arab J Sci Eng 46, 6303–6313 (2021). https://doi.org/10.1007/s13369-020-04960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04960-2

Keywords

Navigation