Skip to main content
Log in

Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrochemical discharge machining (ECDM) is a triumphant process for producing micro-holes in glass materials and yet holds the potential for improvement. In ECDM, electrolyte selection is crucial as it controls the spark pattern and flushes debris from the machining zone. Despite numerous experimental studies, few analytical studies were reported for ECDM modeling and finite element modeling-based electrolyte’s comparative study is not reported yet. This study focuses on developing a thermal model to compare the ECDM performance in terms of material removal rate (MRR) for different electrolytes, viz. NaOH, KOH, and NaCl. The plots of temperature distributions are obtained underneath the spark and further processed to evaluate the MRR. Predicted results are observed to be in accordance with the experimental results. The effects of electrolyte concentration, applied voltage, spark radius, and duty ratio on MRR are analyzed through simulations. Results show that MRR decreases with the increase in spark radius while increases with the increase in other parameters. NaOH electrolyte produces higher MRR; an increase of 8.72 mg and 10.18 mg is observed when compared to KOH and NaCl at 60 wt% concentration. Moreover, experimental studies are performed to evaluate the electrolyte’s effect (includes NaNO3) on radial overcut (ROC) and hole circularity. KOH electrolyte provides the least overcut and better hole circularity due to stable and smooth spark pattern. An improvement of 32.1% in overcut and 40.8% in hole circularity was observed using the KOH when compared to NaNO3. NaOH and KOH are revealed as the successful electrolytes for machining with ECDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

μm:

Microns

μs:

Microseconds

A:

Ampere

V:

Volt

M:

Molar

%wt./vol.:

Weight percentage per unit volume

Q g :

Heat energy (W/m2)

K :

Kelvin

k :

Thermal conductivity (W/m K)

C p :

Specific heat capacity (J/kg K)

T o :

Room temperature (K)

T m :

Work material melting temperature (K)

ρ :

Density (kg/m3)

h :

Convective heat coefficient (W/m2 K)

E p :

Energy transference to the work material

q c :

Convective heat transfer (W/m2)

R :

Spark radius (μm)

C :

Electrolyte concentration (wt%)

T on :

Pulse on time

T off :

Pulse off time

ECDM:

Electrochemical discharge machining

ECM:

Electrochemical machining

EDM:

Electric discharge machining

FEM:

Finite element modeling

MEMS:

Micro-electromechanical systems

IEG:

Inter-electrode gap

MRR:

Material removal rate

HAZ:

Heat-affected zone

ROC:

Radial overcut

DC:

Direct current

NaOH:

Sodium hydroxide

KOH:

Potassium hydroxide

NaCl:

Sodium chloride

NaNO3 :

Sodium nitrate

OH :

Hydroxide ion

Na+ :

Sodium ion

K+ :

Potassium ion

H+ :

Hydrogen ion

Cl :

Chloride ion

No3 :

Nitrate ion

References

  1. Wüthrich, R.; Fascio, V.: Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. Int. J. Mach. Tools Manuf. 45, 1095–1108 (2005). https://doi.org/10.1016/j.ijmachtools.2004.11.011

    Article  Google Scholar 

  2. Kulkarni, A.; Sharan, R.; Lal, G.K.: An experimental study of discharge mechanism in electrochemical discharge machining. Int. J. Mach. Tools Manuf. 42, 1121–1127 (2002). https://doi.org/10.1016/S0890-6955(02)00058-5

    Article  Google Scholar 

  3. Bhattacharyya, B.; Doloi, B.N.; Sorkhel, S.L.: Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J. Mater. Process. Technol. 95, 145–154 (1999). https://doi.org/10.1016/S0924-0136(99)00318-0

    Article  Google Scholar 

  4. Huang, H.: Machining characteristics and surface integrity of yttria-stabilized tetragonal zirconia in high speed deep grinding. Mater. Sci. Eng. A 345(1–2), 155–163 (2003). https://doi.org/10.1016/S0921-5093(02)00466-5

    Article  Google Scholar 

  5. Wang, F.C.; Zhang, Z.H.; Sun, Y.J.; et al.: Rapid and low-temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon 95, 396–407 (2015). https://doi.org/10.1016/j.carbon.2015.08.061

    Article  Google Scholar 

  6. Sarkar, B.R.; Doloi, B.; Bhattacharyya, B.: Investigation into the influences of the power circuit on the micro-electrochemical discharge machining process. Proc. IMechE B J. Eng. Manuf. 223(2), 133–144 (2009). https://doi.org/10.1243/09544054JEM1258

    Article  Google Scholar 

  7. Goud, M.M.; Sharma, A.K.; Jawalkar, C.S.: A review on material removal mechanism in electrochemical discharge machining ECDM and possibilities to enhance the material removal rate. Precis. Eng. 45, 1–17 (2016). https://doi.org/10.1016/j.precisioneng.2016.01.007

    Article  Google Scholar 

  8. Antil, P.; Singh, S.; Singh, S.; Prakash, C.; et al.: Metaheuristic approach in machinability evaluation of silicon carbide particle/glass fiber–reinforced polymer matrix composites during electrochemical discharge machining process. Meas. Control 52(7–8), 1167–1176 (2019). https://doi.org/10.1177/0020294019858216

    Article  Google Scholar 

  9. Wuthrich, R.; Hof, L.A.: The gas film in spark assisted chemical engraving SACE—a key element for micro-machining applications. Int. J. Mach. Tools Manuf. 46, 828–835 (2006). https://doi.org/10.1016/j.ijmachtools.2005.07.029

    Article  Google Scholar 

  10. Wüthrich, R.; Despont, B.; Maillard, P.; et al.: Improving the material removal rate in spark-assisted chemical engraving SACE gravity-feed micro-hole drilling by tool vibration. J. Micromech. Microeng. 16, N28–N31 (2006). https://doi.org/10.1088/0960-1317/16/11/NO3

    Article  Google Scholar 

  11. Antil, P.; Singh, S.; Manna, A.: Experimental investigation during electrochemical discharge machining (ECDM) of hybrid polymer matrix composites. Iran. J. Sci. Technol. Trans Mech. Eng. 44, 813–824 (2020). https://doi.org/10.1007/s40997-019-00280-5

    Article  Google Scholar 

  12. Bellubbi, S.; Naik, R.; Sathisha, N.: An experimental study of process parameters on material removal rate in ECDM process. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.510

    Article  Google Scholar 

  13. Sarkar, B.R.; Doloi, B.; Bhattacharyya, B.: Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int. J. Adv. Manuf. Technol. 28, 873–888 (2006). https://doi.org/10.1007/s00170-004-2448-1

    Article  Google Scholar 

  14. Kurafuji, H.: Electrical discharge drilling of glass. I. Ann. CIRP 16, 415–419 (1968)

    Google Scholar 

  15. Basak, I.; Ghosh, A.: Mechanism of spark generation during electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 62, 46–53 (1997). https://doi.org/10.1016/0924-0136(95)02202-3

    Article  Google Scholar 

  16. Basak, I.; Ghosh, A.: Mechanism of material removal in electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 71, 350–359 (1997). https://doi.org/10.1016/S0924-0136(97)00097-6

    Article  Google Scholar 

  17. Fascio, V.; Langen, H.; Bleuler, H.; et al.: Investigations of the spark- assisted chemical engraving. Electrochem. Commun. 5, 203–207 (2003). https://doi.org/10.1016/S1388-2481(03)00018-3

    Article  Google Scholar 

  18. Wuthrich, R.; Comninellis, C.H.; Bleuler, H.: Bubble evolution on vertical electrodes under extreme current densities. Electrochim. Acta 50(25–26), 242–246 (2005). https://doi.org/10.1016/j.electacta.2004.12.052

    Article  Google Scholar 

  19. Sabahi, N.; Razfar, M.R.: Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). Int. J. Adv. Manuf. Technol. 95, 643–657 (2018). https://doi.org/10.1007/s00170-017-1210-4

    Article  Google Scholar 

  20. Jawalkar, C.S.; Sharma, A.K.; Kumar, P.: Investigations on performance of ECDM process using NaOH and NaNO3 electrolytes while micro machining soda-lime glass. Int. J. Manuf. Technol. Manag. 28, 80–93 (2014)

    Article  Google Scholar 

  21. Goud, M.M.; Sharma, A.K.: On performance studies during micromachining of quartz glass using electrochemical discharge machining. J. Mech. Sci. Technol. 31, 1365–1372 (2017). https://doi.org/10.1007/s12206-017-0236

    Article  Google Scholar 

  22. Ladeesh, V.; Manu, R.: Grinding-aided electrochemical discharge drilling in the light of electrochemistry. Proc. IMechE C J. Mech. Eng. Sci. 233(6), 1896–1909 (2019). https://doi.org/10.1177/0954406218780129

    Article  Google Scholar 

  23. Gupta, P.K.; Dvivedi, A.; Kumar, P.: Effect of electrolytes on quality characteristics of glass during ECDM. Key Eng. Mater. 68, 141–145 (2015). https://doi.org/10.4028/www.scientific.net/KEM.658.141

    Article  Google Scholar 

  24. Ziki, A.J.D.; Didar, T.F.; Wuthrich, R.: Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 57, 66–72 (2012). https://doi.org/10.1016/j.ijmachtools.2012.01.012

    Article  Google Scholar 

  25. Cao, X.D.; Kim, B.H.; Chu, C.N.: Micro structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis. Eng. 33, 459–465 (2009). https://doi.org/10.1016/j.precisioneng.2009.01.001

    Article  Google Scholar 

  26. Cheng, C.P.; Wu, K.L.; Mai, C.C.; et al.: Study of gas film quality in electrochemical discharge machining. Int. J. Mach. Tools Manuf. 50, 689–697 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.012

    Article  Google Scholar 

  27. Bansal, N.P.; Doremus, R.H.: Handbook of Glass Properties. Elsevier, Amsterdam (2013)

    Google Scholar 

  28. Harugade, M.L.; Waigaonkar, S.D.: Effect of different electrolytes on material removal rate, diameter of hole, and spark in electrochemical discharge machining. In: Advances in Manufacturing, Lectures in Mechanical Engineering, pp. 427–437. Springer (2012). https://doi.org/10.1007/978-3-319-68619-6_41

  29. Singh, T.; Dvivedi, A.: On performance evaluation of textured tools during micro-channeling with ECDM. J. Manuf. Process 32, 699–713 (2018). https://doi.org/10.1016/j.jmapro.2018.03.033

    Article  Google Scholar 

  30. Sabahi, N.; Hajian, M.; Razfar, M.R.: Experimental study on the heat-affected zone of glass substrate machined by electrochemical discharge machining (ECDM) process. Int. J. Adv. Manuf. Technol. 97(1–4), 1557–1564 (2018). https://doi.org/10.1007/s00170-018-2027-5

    Article  Google Scholar 

  31. Raghuram, V.; Pramila, T.; Srinivasa, Y.G.; et al.: Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon. J. Mater. Process. Technol. 52, 301–318 (1995). https://doi.org/10.1016/0924-0136(94)01615-8

    Article  Google Scholar 

  32. Jain, V.K.; Dixit, P.M.; Pandey, P.M.: On the analysis of the electrochemical spark machining process. Int. J. Mach. Tools Manuf. 39, 165–186 (1999). https://doi.org/10.1016/S0890-6955(98)00010-8

    Article  Google Scholar 

  33. Rajput, V.; Goud, M.M.; Suri, N.M.: Performance analysis of ECDM process using surfactant mixed electrolyte. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds.) Manufacturing Engineering. Lecture Notes on Multidisciplinary Industrial EngineeringSpringer, Singapore (2020). https://doi.org/10.1007/978-981-15-4619-8_22

    Chapter  Google Scholar 

  34. Wei, C.; Xu, K.; Ni, J.; et al.: A finite element based model for electrochemical discharge machining in discharge regime. Int. J. Adv. Manuf. Technol. 54, 987–995 (2011). https://doi.org/10.1007/s00170-010-3000-0

    Article  Google Scholar 

  35. Rajput, V.; Goud, M.M.; Suri, N.M.: Numerical and experimental investigations to analyze the micro-hole drilling process in spark-assisted chemical engraving (SACE). SN Appl. Sci. 2, 1525 (2020). https://doi.org/10.1007/s42452-020-03311-y

    Article  Google Scholar 

  36. Rajput, V.; Goud, M.M.; Suri, N.M.: Finite element modelling for analyzing material removal rate in ECDM. J. Adv. Manuf. Syst. (2020). https://doi.org/10.1142/S0219686720500365

    Article  Google Scholar 

  37. Bhondwe, K.L.; Yadava, V.; Kathiresan, G.: Finite element prediction of material removal rate due to electro-chemical spark machining. Int. J. Mach. Tools Manuf. 46, 1699–1706 (2006). https://doi.org/10.1016/j.ijmachtools.2005.12.005

    Article  Google Scholar 

  38. Goud, M.M.; Sharma, A.K.: A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc. IMechE C J. Mech. Eng. Sci. 231(13), 2417–2428 (2016). https://doi.org/10.1177/0954406216636167

    Article  Google Scholar 

  39. Behroozfar, A.; Razfar, M.R.: Experimental and numerical study of material removal in electrochemical discharge machining (ECDM). Mater. Manuf. Process. 31(4), 495–503 (2015). https://doi.org/10.1080/10426914.2015.1058951

    Article  Google Scholar 

  40. Kamaraj, A.B.; Jui, S.K.; Cai, Z.; et al.: A mathematical model to predict overcut during electrochemical discharge machining. Int. J. Adv. Manuf. Technol. 81, 685–691 (2015). https://doi.org/10.1007/s00170-015-7208-x

    Article  Google Scholar 

  41. Singh, D.; Goud, M.M.: A 3D spark model to evaluate MRR in ECDM. J. Adv. Manuf. Syst. 18(3), 435–446 (2018). https://doi.org/10.1142/S0219686719500239

    Article  Google Scholar 

  42. Panda, M.C.; Yadava, V.: Intelligent modeling and multiobjective optimization of die sinking electrochemical spark machining process. Mater. Manuf. Process 27(1), 10–25 (2012). https://doi.org/10.1080/10426914.2010.544812

    Article  Google Scholar 

  43. Mishra, D.K.; Verma, A.K.; Arab, J.; et al.: Numerical and experimental investigations into microchannel formation in glass substrate using electrochemical discharge machining. J. Micromech. Microeng. (2019). https://doi.org/10.1088/1361-6439/ab1da7

    Article  Google Scholar 

  44. Fascio, V.; Wuthrich, R.; Bleuler, H.: Spark assisted chemical engraving in the light of electrochemistry. Electrochim. Acta 49, 3997–4003 (2004). https://doi.org/10.1016/j.electacta.2003.12.062

    Article  Google Scholar 

  45. Karazi, S.M.; Ahad, I.U.; Benyounis, K.Y.: Laser micromachining for transparent materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier (2017). https://doi.org/10.1016/B978-0-12-803581-8.04149-7

  46. Rajput, V.; Pundir, S.S.; Goud, M.; et al.: Multi-response optimization of ECDM parameters for silica (quartz) using grey relational analysis. Silicon (2020). https://doi.org/10.1007/s12633-020-00538-7

    Article  Google Scholar 

  47. Mouliprasanth, B.; Hariharan, P.: Measurement of performance and geometrical features in electrochemical micromachining of SS304 alloy. Exp. Tech. (2019). https://doi.org/10.1007/s40799-019-00350-y

    Article  Google Scholar 

  48. Krotz, H.; Wegener, H.: Sparc assisted electrochemical machining: a novel possibility for microdrilling into electrical conductive materials using the electrochemical discharge phenomenon. Int. J. Adv. Manuf. Technol. 79, 1633–1643 (2015)

    Article  Google Scholar 

  49. Han, M.S.; Min, B.K.; Lee, S.J.: Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte. J. Micromech. Microeng. (2009). https://doi.org/10.1088/0960-1317/18/4/045019

    Article  Google Scholar 

  50. Gupta, P.K.; Dvivedi, A.; Kumar, P.: Effect of pulse duration on quality characteristics of blind hole drilled in glass by ECDM. Mater. Manuf. Process. 31, 1740–1748 (2016). https://doi.org/10.1080/10426914.2015.1103857

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and assistance given by the Punjab Engineering College, Chandigarh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viveksheel Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, V., Goud, M. & Suri, N.M. Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM. Arab J Sci Eng 46, 2097–2119 (2021). https://doi.org/10.1007/s13369-020-05009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05009-0

Keywords

Navigation