Skip to main content
Log in

Synthesis, Characterization and Corrosion Inhibition Performance of Glycine-Functionalized Graphene/Fe3O4 Nanocomposite (Gr/Fe@Gly NC) for Mild Steel Corrosion in 1 M HCl

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We have synthesized a ternary glycine-functionalized graphene/Fe3O4 nanocomposite referred as Gr/Fe@Gly NC which was characterized by fourier transform infrared spectroscopy analysis (FT-IR), X-ray diffraction, high-resolution scanning electron microscopy/energy-dispersive X-ray spectroscopy (HR-SEM/EDS) and the transmission electron microscopy. The effectiveness of synthesized nanocomposite as anticorrosive material for mild steel in the acid medium was assessed using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) complemented with FT-IR and SEM studies. The results of weight loss study depicted its effectiveness and stability up to 60 °C at very low concentrations. FT-IR and SEM studies supported the existence of a protective film on the inhibited steel surface. The adsorption followed the Langmuir adsorption isotherm; as such, it approximated and defined the thermodynamic and kinetic parameters governing the adsorption process. ANOVA statistical check confirmed that there is statistically no significant difference between the inhibition efficiencies obtained through weight loss, PDP and EIS techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dutta, D.; Ganda, A.N.F.; Chih, J.K.; Huang, C.; Tseng, C.J.; Su, C.Y.: Revisiting graphene-polymer nanocomposite for enhancing anti-corrosion performance: a new insight into interface chemistry and diffusion model. Nanoscale 10, 12612–12624 (2018)

    Google Scholar 

  2. Mosa, J.; Rosero-Navarro, N.C.; Aparicio, M.: Active corrosion inhibition of mild steel by environmentally-friendly Ce-doped organic–inorganic sol–gel coatings. RSC Adv. 6, 39577–39586 (2016)

    Google Scholar 

  3. Mazumder, M.A.J.: Synthesis, characterization and electrochemical analysis of cysteine modified polymers for corrosion inhibition of mild steel in aqueous 1 M HCl. RSC Adv. 9, 4277–4294 (2019)

    Google Scholar 

  4. Murayama, M.; Nishimura, T.; Tsuzaki, K.: Nano-scale chemical analysis of rust on a 2% Si-bearing low alloy steel exposed in a coastal environment. Corros. Sci. 50, 2159–2165 (2008)

    Google Scholar 

  5. Nalwa, H.S.: Handbook of Nanostructured Materials and Nanotechnology, vol. 1, p. 75. Academic Press, San Diego (2000)

    Google Scholar 

  6. Alam, J.; Riaz, U.; Ashraf, S.M.; Ahmad, S.: Corrosion-protective performance of nano polyaniline/ferrite dispersed alkyd coatings. J. Coat. Technol. Res. 5, 123–128 (2007)

    Google Scholar 

  7. Solomon, M.M.; Gerengi, H.; Kaya, T.; Umoren, S.A.: Performance evaluation of a chitosan/silver nanoparticles composite on St37 steel corrosion in a 15% HCl solution. ACS Sustain. Chem. Eng. 5, 809–820 (2017)

    Google Scholar 

  8. Atta, A.M.; Mahdy, G.A.; Al-Lohedan, H.A.; Al-Hussa, S.A.: Corrosion inhibition of mild steel in acidic medium by magnetite myrrh nanocomposite. Int. J. Electrochem. Sci. 9, 8446–8457 (2014)

    Google Scholar 

  9. Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Google Scholar 

  10. Nine, M.J.; Cole, M.A.; Trana, D.N.H.; Losic, D.: Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 3, 12580–12602 (2015)

    Google Scholar 

  11. Zhu, Y.W.; Murali, S.; Cai, W.W.; Li, X.S.; Suk, J.W.; Jeffrey, R.P.; Rodney, S.R.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Google Scholar 

  12. Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Saleh, T.A.: Bis(2-aminoethyl)amine-modified graphene oxide nanoemulsion for carbon steel protection in 15% HCl: effect of temperature and synergism with iodide ions. J. Colloid Interface Sci. 564, 124–133 (2020)

    Google Scholar 

  13. Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Adesin, A.Y.; Saleh, T.A.: The synergistic influence of polyethyleneimine grafted graphene oxide and iodide for the protection of steel in acidizing conditions. RSC Adv. 10, 17739–17751 (2020)

    Google Scholar 

  14. Liu, C.; Qiu, S.; Du, P.; Zhao, H.; Wang, L.: An ionic liquid–graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications. Nanoscale 10, 8115–8124 (2018)

    Google Scholar 

  15. Zhou, X.; Zhang, Y.; Huang, Z.; Lu, D.; Zhu, A.; Shi, G.: Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution. Sci. Rep. 6, 38417 (2016)

    Google Scholar 

  16. Erdenedelger, G.; Lee, T.; Dao, T.D.; Kim, J.S.; Kim, B-Su; Jeong, H.M.: Solid-state functionalization of graphene with amino acids toward water-dispersity: implications on a composite with polyaniline and its characteristics as a supercapacitor electrode material. J. Mater. Chem. A 2, 12526–12534 (2014)

    Google Scholar 

  17. Kumar, A.; Khandelwal, M.: Amino acid mediated functionalization and reduction of graphene oxide—synthesis and the formation mechanism of nitrogen-doped graphene. New J. Chem. 38, 3457 (2014)

    Google Scholar 

  18. Bose, S.; Kuila, T.; Mishra, A.K.; Kim, N.H.; Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)

    Google Scholar 

  19. Aslam, R.; Mobin, M.; Aslam, J.; Lgaz, H.; Chung, I.-M.: Inhibitory effect of sodium carboxymethylcellulose and synergistic biodegradable gemini surfactants as effective inhibitors for MS corrosion in 1 M HCl. J. Mater. Res. Technol. 8, 4521–4533 (2019)

    Google Scholar 

  20. Mobin, M.; Aslam, R.; Aslam, J.: Synergistic effect of cationic gemini surfactants and butanol on the corrosion inhibition performance of mild steel in acid solution. Mater. Chem. Phys. 223, 623–633 (2019)

    Google Scholar 

  21. Solomon, M.M.; Umoren, S.A.; Obot, I.B.; Sorour, A.A.; Gerengi, H.: Exploration of dextran for application as corrosion inhibitor for steel in strong acid environment: effect of molecular weight, modification, and temperature on efficiency. ACS Appl. Mater. Interfaces. 10, 28112–28129 (2018)

    Google Scholar 

  22. Shoeb, M.; Mobin, M.; Ali, A.; Zaman, S.; Naqvi, A.H.: Graphene-mesoporous anatase TiO2 nanocomposite: a highly efficient and recyclable heterogeneous catalyst for one-pot multicomponent synthesis of benzodiazepine derivatives. Appl. Organomet. Chem. 32, 3961–3979 (2018)

    Google Scholar 

  23. Shoeb, M.; Mobin, M.; Rauf, M.A.; Owais, M.; Naqvi, A.H.: In vitro and in vivo antimicrobial evaluation of graphene–polyindole (gr@pin) nanocomposite against methicillin-resistant staphylococcus aureus pathogen. ACS Omega 3, 9431–9440 (2018)

    Google Scholar 

  24. Shoeb, M.; Singh, B.R.; Mobin, M.; Afreen, G.; Khan, W.; Naqvi, A.H.: Kinetic study on mutagenic chemical degradation through three pot synthesized graphene@ZnO nanocomposite. PLoS ONE 10, 0135055 (2015)

    Google Scholar 

  25. Khan, W.; Singh, A.K.; Naseem, S.; Husain, S.; Shoeb, M.; Nadeem, M.: Synthesis and magnetic dispersibility of magnetite decorated reduced graphene oxide. Nano-Struct. Nano-Objects 16, 180–184 (2018)

    Google Scholar 

  26. Jadhav, S.V.; Lee, S.H.; Nikam, D.S.; Bohara, R.A.; Pawar, S.H.; Yu, Y.S.: Studies on enhanced colloidal stability and heating ability of glycine functionalized LSMO nanoparticles for cancer hyperthermia therapy. New J. Chem. 41, 1598–1608 (2017)

    Google Scholar 

  27. Antosova, A.; Bednarikova, Z.; Koneracka, M.; Antal, I.; Zavisova, V.; Kubovcikova, M.; Wu, J.W.; Wang, S.S.S.; Gazova, Z.: Destroying activity of glycine coated magnetic nanoparticles on lysozyme, α-lactalbumin, insulin and α-crystallin amyloid fibrils. J. Magn. Magn. Mater. 471, 169–176 (2019)

    Google Scholar 

  28. Kumar, M.S.; Kumar, S.L.A.; Sreekanth, A.: Anticorrosion potential of 4-Amino-3-methyl-1,2,4-triazole-5-thione derivatives (SAMTT and DBAMTT) on mild steel in hydrochloric acid solution. Ind. Eng. Chem. Res. 51, 5408–5418 (2012)

    Google Scholar 

  29. Ahamed, S.Z.A.; Dillip, G.R.; Raghavaiah, P.; Mallikarjuna, K.; Raju, B.D.P.: Spectroscopic and thermal studies of γ-glycine crystal grown from potassium bromide for optoelectronic applications. Arab. J. Chem. 6, 429–433 (2013)

    Google Scholar 

  30. Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M.: Potential of Borage flower aqueous extract as an environmentally sustainable corrosion inhibitor for acid corrosion of mild steel: electrochemical and theoretical studies. J. Mol. Liq. 277, 895–911 (2019)

    Google Scholar 

  31. Ansari, M.M.N.; Khan, S.: Structural, electrical and optical properties of sol-gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B 520, 21–27 (2017)

    Google Scholar 

  32. Zheng, X.; Zhang, S.; Li, W.; Yin, L.; He, J.; Wu, J.: Investigation of 1-butyl-3-methyl-1H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution. Corros. Sci. 80, 383–392 (2014)

    Google Scholar 

  33. Yüce, A.O.; Mert, B.D.; Kardas, G.; Yazıcı, B.: Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corros. Sci. 83, 310–316 (2014)

    Google Scholar 

  34. Mobin, M.; Aslam, R.: Ester-based pyridinium gemini surfactants as novel inhibitors for mild steel corrosion in 1 M HCl Solution. Tenside, Surfactants, Deterg. 54, 486 (2017)

    Google Scholar 

  35. Al-Moghrabi, R.S.; Abdel-Gaber, A.M.; Rahal, H.T.: Corrosion inhibition of mild steel in hydrochloric and nitric acid solutions using willow leaf extract. Prot. Met. Phys. Chem. Surf. 55, 603–607 (2019)

    Google Scholar 

  36. Zhang, Z.; Ba, H.; Wu, Z.: Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: electrochemical and adsorption behavior studies. Constr. Build. Mater. 227, 117080 (2019)

    Google Scholar 

  37. Mobin, M.; Aslam, R.: Evaluation of non-ionic surfactants as environmentally benign corrosion inhibitors for low carbon steel in 3.5 NaCl solution. Process Saf. Environ. 114, 279–295 (2018)

    Google Scholar 

  38. Eddy, N.O.; Ameh, P.O.; Essien, N.B.: Experimental and computational chemistry studies on the inhibition of aluminium and mild steel in 0.1 M HCl by 3-nitrobenzoic acid. J. Taibah Univ. Sci. 12, 545–556 (2018)

    Google Scholar 

  39. Aslam, R.; Mobin, M.; Zehra, S.; Obot, I.B.; Ebenso, E.E.: N, N’-Dialkylcystinegemini and monomeric N-alkyl cysteine surfactants as corrosion inhibitors on mild steel corrosion in 1 M HCl solution—a comparative study. ACS Omega 2, 5691–5707 (2017)

    Google Scholar 

  40. Hoseinzadeh, A.R.; Danaee, I.; Maddahy, M.H.; Avei, M.R.: Taurıne as a green corrosion inhibitor for AISI 4130 steel alloy in hydrochloric acid solution. Chem. Eng. Commun. 201, 380–402 (2014)

    Google Scholar 

  41. Solomon, M.M.; Gerengi, H.; Umoren, S.A.: Carboxymethyl cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 steel in 15% H2SO4 medium. ACS Appl. Mater. Interfaces. 9, 6376–6389 (2017)

    Google Scholar 

  42. Cui, J.; Yang, Y.; Li, X.; Yuan, W.; Pei, Y.: Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water. ACS Appl. Mater. Interfaces. 10, 4183–4197 (2018)

    Google Scholar 

  43. Hsu, C.S.; Mansfeld, F.: Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747 (2001)

    Google Scholar 

  44. Saha, S.K.; Dutta, A.; Ghosh, P.; Sukul, D.; Banerjee, P.: Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys. Chem. Chem. Phys. 18, 17898 (2016)

    Google Scholar 

  45. Fouda, A.S.; Badawy, A.A.: Adsorption and corrosion inhibition of Cu in nitric acid by expired simvastatin drug. Prot. Met. Phys. Chem. Surf. 55, 572–582 (2019)

    Google Scholar 

  46. Solmaz, R.: Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution. Corros. Sci. 81, 75–84 (2014)

    Google Scholar 

  47. Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M.: Corrosion inhibition of C38 steel by alkaloids extract of Geissospermumlaeve in 1 M hydrochloric acid: electrochemical and phytochemical studies. Corros. Sci. 92, 287–300 (2015)

    Google Scholar 

  48. Quadri, T.W.; Olasunkanmi, L.O.; Fayemi, O.E.; Solomon, M.M.; Ebenso, E.E.: Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2, 8421–8437 (2017)

    Google Scholar 

  49. Aouniti, A.; Khaled, K.F.; Hammouti, B.: Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of armco iron in molar HCl. Int. J. Electrochem. Sci. 8, 5925–5943 (2013)

    Google Scholar 

  50. Amin, M.A.; Ibrahim, M.M.: Corrosion and corrosion control of mild steel in concentrated H2SO4 solution by a newly synthesized glycine derivative. Corros. Sci. 53, 873–885 (2011)

    Google Scholar 

  51. Eddy, N.O.; Awe, F.E.; Gimba, C.E.; Ibisi, N.O.; Ebenso, E.E.: QSAR, experimental and computational chemistry simulation studies on the inhibition, potentials of some amino acids for the corrosion of mild steel in 0.1 M HCl. Int. J. Electrochem. Sci. 6, 931–957 (2011)

    Google Scholar 

  52. Zerfaoui, M.; Oudda, H.; Hammouti, B.; Kertitd, S.; Benkaddour, M.: Inhibition of corrosion of iron in citric acid media by aminoacids. Prog. Org. Coat. 51, 134–138 (2004)

    Google Scholar 

  53. Zehra, S.; Mobin, M.; Aslam, J.; Parveen, M.: Assessment of glycine derivative N-benzylidine-2((2-oxo-2-(10H-phenothiazine-10yl)ethyl)amino) acetohydrazide as inhibitor for mild steel corrosion in 1 M HCl solution: electrochemical and theoretical approach. J. Adhes. Sci. Technol. 32, 317–342 (2017)

    Google Scholar 

  54. Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Al-Hussain, S.A.: Application of eco-friendly magnetite nanoparticles coated with rosin amidoxime as corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Int. J. Electrochem. Sci. 10, 2621–2633 (2015)

    Google Scholar 

  55. El-Mahdy, G.A.; Atta, A.M.; Dyab, A.K.F.; Al-Lohedan, H.A.: Protection of petroleum pipeline carbon steel alloys with new modified core-shell magnetite nanogel against corrosion in acidic medium. J. Chem. 2013, 1–9 (2013)

    Google Scholar 

  56. Geethanjali, R.; Subhashini, S.: Synthesis of magnetite-containing polyanilinepolyacrylamide nanocomposite, characterization and corrosion inhibition behavior on mild steel in acid media. Chem. Sci. Trans. 2, 1148–1159 (2013)

    Google Scholar 

  57. Atta, A.M.; El-Azabawy, O.E.; Ismail, H.S.; Hegazy, M.A.: Novel dispersed magnetite core–shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros. Sci. 53, 1680–1689 (2011)

    Google Scholar 

Download references

Acknowledgements

Ruby Aslam gratefully acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi, India, for Research Associate fellowship (File Number 09/112(0616)2K19 EMR-I). Thanks are also due to University Sophisticated Instrument Facility (USIF), A.M.U. Aligarh, India, for providing TEM, SEM and EDS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mobin.

Ethics declarations

Conflict of interest

The authors wish to state that no conflict of interest exists with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, R., Mobin, M., Shoeb, M. et al. Synthesis, Characterization and Corrosion Inhibition Performance of Glycine-Functionalized Graphene/Fe3O4 Nanocomposite (Gr/Fe@Gly NC) for Mild Steel Corrosion in 1 M HCl. Arab J Sci Eng 46, 5489–5503 (2021). https://doi.org/10.1007/s13369-020-05015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05015-2

Keywords

Navigation