Skip to main content
Log in

SPDC photon pairs using a spatially anti-symmetric pump beam in a ppLN ridge waveguide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we study the possible parametric down-conversion processes in a type II phase-matched, Lithium Niobate ridge waveguide, designed to generate photon pairs in the telecommunication range. A quantum analysis of spontaneous parametric down-conversion (SPDC), first, with a pulsed Gaussian pump beam and second, with a pulsed, spatially anti-symmetric Hermite-Gaussian HG (1,0) pump beam predict the possible down conversion processes in each case. In case of the former, degenerate photon pairs are emitted at 1550 nm with the highest efficiency in the fundamental waveguide mode. While, in case of the latter, non-degenerate photon pairs in different higher-order spatial modes are generated. The joint spectral amplitude (JSA) analysis of these processes, prove that the generated photons pairs having orthogonal polarizations are negatively correlated. With multiple degrees of freedom, like polarization and spatial modes, such photons can be further harnessed towards modal-entangled and hyper-entangled photons for quantum information applications. This study involving the JSA is one of the first kinds, especially, to show the possibility of photon pairs generated in different spatial modes and polarization, after being incident with a spatially anti-symmetric pump beam in a ridge waveguide scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. O. Alibart, V. D’Auria, M.D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, S. Tanzilli, J. Opt. 18, 104001 (2016)

    Article  ADS  Google Scholar 

  2. A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P.J. Mosley, C. Silberhorn, Phys. Rev. A 80, 033829 (2009); A. Eckstein, PhD Thesis Naturwissenschaftliche Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg (2012)

    Article  ADS  Google Scholar 

  3. A. Dosseva, L. Cincio, A.M. Branczyk, Phys. Rev. A 93, 013801 (2016)

    Article  ADS  Google Scholar 

  4. S. Lemieux, M.Sc. Thesis, Department of Physics, University of Ottawa. (2016)

  5. B. Fang, O. Cohen, M. Liscidini, J.E. Sipe, V.O. Lorenz, Optica. 1 5, 281 (2014)

    Article  ADS  Google Scholar 

  6. R.B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, Opt. Exp. 21, 10659 (2013)

    Article  ADS  Google Scholar 

  7. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, N. Gisin, Eur. Phys. J. D 18, 155–160 (2002); A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, S. Tanzilli, New J. Phys 12, 103005 (2010)

    ADS  Google Scholar 

  8. T. Suhara, G. Nakaya, J. Kawashima, M. Fujimura, IEEE Photonics Technol. Lett. 21, 1096 (2009); J. Kawashima, M. Fujimura, T. Suhara, I.E.E.E. Photon, Technol. Lett. 21, 566 (2009)

    Article  ADS  Google Scholar 

  9. Rolf Horn, Ph.D thesis, University of Waterloo, Ontario, Canada (2011).

  10. D.A. Antonosyan, A.S. Solntsev, A.A. Sukhorukov, Opt. Comm. 327, 22–26 (2014); A.S. Solntsev, P. Kumar, T. Pertsch, A.A. Sukhorukov, F. Setzpfandt, APL Photonics 3, 021301 (2018)

    Article  ADS  Google Scholar 

  11. Y. Ming, A.H. Tan, Z.J. Wu, Z.X. Chen, F. Xu, Y.Q. Lu, Sci. Rep. 4, 4812 (2014)

    Article  Google Scholar 

  12. Y.F. Zhou, L. Wang, P. Liu, T. Liu, L. Zhang, D.T. Huang, X.L. Wang, Nuclear Instrum. Methods Phys. Res. B 326, 110–112 (2014)

    Article  ADS  Google Scholar 

  13. T. Umeki, O. Tadanaga, M. Asobe, IEEE J. Quantum Electron. 46, 1206 (2010)

    Article  ADS  Google Scholar 

  14. S.B. Cohn, Proc. IRE 35, 783–788 (1947)

    Article  Google Scholar 

  15. S. Hopfer, IRE Trans. Microw. Theory Tech. 3, 20–29 (1955)

    Article  ADS  Google Scholar 

  16. W.P. Grice, I.A. Walmsley, Phys. Rev. A 56, 1627 (1997)

    Article  ADS  Google Scholar 

  17. R. Kumar, J. Ghosh, J. Opt. 20, 075202 (2018)

    Article  ADS  Google Scholar 

  18. P.R. Sharapova, K.H. Luo, H. Herrmann, M. Reichelt, T. Meier, C. Silberhorn, New J. Phys. 19, 123009 (2017)

    Article  ADS  Google Scholar 

  19. A. Mohamedelhassan, MSc Thesis Department of Applied Physics, School of Engineering Science, KTH, Stockholm, Sweden (2012).

  20. D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997)

    Article  ADS  Google Scholar 

  21. O. Gayer, Z. Sacks, E. Galun, A. Ariel, Appl. Phys. B 91, 343–348 (2008)

    Article  ADS  Google Scholar 

  22. R. Kumar, V.K. Yadav, J. Ghosh, Phys. Rev. A 102, 033722 (2020)

    Article  ADS  Google Scholar 

  23. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, S. Tanzilli, Phys. Rev. A 80, 052321 (2009); J. Lugani, S. Ghosh, K. Thyagarajan, J. Opt. Soc. Am. B 13, 795 (2013)

    Article  ADS  Google Scholar 

  24. V. Shukla, J. Ghosh, Phys. Rev. A 101, 023832 (2020)

    Article  ADS  Google Scholar 

  25. M.F. Saleh, B.E.A. Saleh, M.C. Teich, Phys. Rev. A 79, 053842 (2009)

    Article  ADS  Google Scholar 

  26. M.F. Saleh, G. Di Giuseppe, B.E.A. Saleh, M.C. Teich, IEEE Photon. J. 2, 736 (2010)

    Article  ADS  Google Scholar 

  27. M.F. Saleh, G. Di Giuseppe, B.E.A. Saleh, M.C. Teich, Opt. Express 18, 20475 (2010)

    Article  ADS  Google Scholar 

  28. S.P. Walborn, S. Pádua, C.H. Monken, Phys. Rev. A 71, 053812 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology, Government of India for research grants: DST/ICPS/QuST/Theme-l/2019, Project #9 and DST/SERB/EMR/2015/000858 to work on the current problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyee Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Ghosh, J. SPDC photon pairs using a spatially anti-symmetric pump beam in a ppLN ridge waveguide. Appl. Phys. B 126, 186 (2020). https://doi.org/10.1007/s00340-020-07537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07537-x

Navigation