Skip to main content
Log in

Ultra-broadband reflectors covering the entire visible regime based on cascaded high-index-contrast gratings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the design of ultra-broadband, highly reflective all-dielectric reflectors covering the entire visible regime based on two cascaded subwavelength high-index-contrast gratings (HCGs). We find that the spectral distance between the two gratings’ reflective bandwidths, which should be appropriately designed in order to extend the overall bandwidth for high reflectivity, is analogous to the well-known Rayleigh, Abbe and Sparrow criteria for resolution limits. Results illustrated with TM-polarized normal incidence show that high reflectivity above 98.5% covering 400–800 nm can be achieved for two cascaded HCGs with an appropriate spectral distance. The effects of key structural parameters on the bandwidth extension are discussed with physical insights. We expect this work will advance the engineering and applications of HCGs as ultra-thin, ultra-broadband and all-dielectric reflectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Gat, Proc. SPIE 4056, 50–64 (2000)

    Article  ADS  Google Scholar 

  2. M.S. Rauscher, M. Schardt, M.H. Köhler, A.W. Koch, Sens. Actuators B Chem. 259, 420–427 (2018)

    Article  Google Scholar 

  3. M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, Nat. Photon. 1, 119–122 (2007)

    Article  ADS  Google Scholar 

  4. I.S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, J.Mørk Jesper, IEEE J. Quantum Electron. 46, 1245–1253 (2010)

    Article  ADS  Google Scholar 

  5. E. Haglund, J.S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, M. Tan, Opt. Express 24, 1999–2005 (2016)

    Article  ADS  Google Scholar 

  6. H.A. Macleod, Thin-film optical filters, 4th edn. (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  7. Y. Zhou, M.C.Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F.G. Sedgwick, C.J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009)

    Article  ADS  Google Scholar 

  8. P. Qiao, W. Yang, C.J. Chang-Hasnain, Adv. Opt. Photon 10, 180–245 (2018)

    Article  Google Scholar 

  9. S.M. Kamali, E. Arbabi, A. Arbabi, A. Faraon, Nanophotonics 7, 1041–1068 (2018)

    Article  Google Scholar 

  10. C.F.R. Mateus, M.C.Y. Huang, Y. Deng, A.R. Neureuther, C. Chang-Hasnain, IEEE Photon Technol. Lett. 16, 518–520 (2004)

    Article  ADS  Google Scholar 

  11. C. Mateus, M. Huang, L. Chen, C.J. Chang-Hasnain, Y. Suzuki, IEEE Photon Technol. Lett. 16, 1676–1678 (2004)

    Article  ADS  Google Scholar 

  12. Y. Ding, R. Magnusson, Opt. Lett. 29, 1135–1137 (2004)

    Article  ADS  Google Scholar 

  13. P. Lalanne, J.P. Hugonin, P. Chavel, J. Lightwave Technol. 4, 2442–2449 (2006)

    Article  ADS  Google Scholar 

  14. R. Magnusson, M. Shokooh-Saremi, Opt. Express 16, 3456–3462 (2008)

    Article  ADS  Google Scholar 

  15. M. Shokooh-Saremi, R. Magnusson, Opt. Lett. 35, 1121–1123 (2010)

    Article  ADS  Google Scholar 

  16. V. Karagodsky, F.G. Sedgwick, C.J. Chang-Hasnain, Opt. Express 18, 16973–16988 (2010)

    Article  ADS  Google Scholar 

  17. V. Karagodsky, C.J. Chang-Hasnain, Opt. Express 20, 10888–10895 (2012)

    Article  ADS  Google Scholar 

  18. Y.H. Ko, R. Magnusson, Optical 5, 289–294 (2018)

    ADS  Google Scholar 

  19. R.C. Ng, J.C. Garcia, J.R. Greer, K.T. Fountaine, ACS Photon 6, 265–271 (2019)

    Article  Google Scholar 

  20. M. Shokooh-Saremi, R. Magnusson, Opt. Lett. 32, 894–896 (2007)

    Article  ADS  Google Scholar 

  21. A. Ahmed, M. Liscidini, R. Gordon, IEEE Photon J. 2, 884–893 (2010)

    Article  ADS  Google Scholar 

  22. S. He, Q. Liu, T. Sa, Z. Wang, AIP Adv. 9, 075301 (2019)

    Article  ADS  Google Scholar 

  23. S. Boutami, B.B. Bakir, J.-L. Leclercq, P. Viktorovitch, Appl. Phys. Lett. 91, 071105 (2007)

    Article  ADS  Google Scholar 

  24. M. Gebski, J.A. Lott, T. Czyszanowski, Opt. Express 27, 7139–7146 (2019)

    Article  ADS  Google Scholar 

  25. Y. Zhou, M. Moewe, J. Kern, M.C.Y. Huang, C.J. Chang-Hasnain, Opt. Express 16, 17282–17287 (2008)

    Article  ADS  Google Scholar 

  26. Y. Zhou, V. Karagodsky, B. Pesala, F.G. Sedgwick, C.J. Chang-Hasnain, Opt. Express 17, 1508–1517 (2009)

    Article  ADS  Google Scholar 

  27. T. Sun, W. Yang, C.J. Chang-Hasnain, Opt. Express 23, 29565–29572 (2015)

    Article  ADS  Google Scholar 

  28. B. Hogan, L. Lewis, M. McAuliffe, S.P. Hegarty, Opt. Express 27, 1508–1517 (2019)

    Article  Google Scholar 

  29. E. Hashemi, J. Bengtsson, J.S. Gustavsson, S. Carlsson, G. Rossbach, Å. Haglund, J. Vac. Sci. Technol. B 33, 050603 (2015)

    Article  Google Scholar 

  30. X. Shi, Y. Lu, C. Chen, S. Liu, G. Li, OSA Contin. 3, 1232–1239 (2020)

    Article  Google Scholar 

  31. Y. Yao, W. Wu, Adv. Opt. Mater. 5, 1700090 (2017)

    Article  Google Scholar 

  32. R. Magnusson, Opt. Lett. 39, 4337–4340 (2014)

    Article  ADS  Google Scholar 

  33. A. Liu, W. Zheng, D. Bimberg, Opt. Commun. 389, 35–41 (2017)

    Article  ADS  Google Scholar 

  34. Y.H. Ko, K.J. Lee, R. Magnusson, Opt. Express 25, 8680–8689 (2017)

    Article  ADS  Google Scholar 

  35. J. Zhang, S. Shi, H. Jiao, X. Ji, Z. Wang, X. Cheng, Photon Res. 8, 426–429 (2020)

    Article  Google Scholar 

  36. https://www.filmetrics.com/refractive-index-database

  37. K.-R. Choi, J.-C. Woo, Y.-H. Joo, Y.-S. Chun, C.-I. Kim, Vacuum 92, 85–89 (2013)

    Article  ADS  Google Scholar 

  38. O. Powell, D. Sweatman, H.B. Harrison, Smart Mater. Struct. 15, S81 (2006)

    Article  ADS  Google Scholar 

  39. M.G. Moharam, D.A. Pommet, E.B. Grann, T.K. Gaylord, J. Opt. Soc. Am. A 12, 1077–1086 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Shenzhen Research Foundation (JCYJ20170413152328742, JCYJ20180507182444250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Lu, Y., Chen, C. et al. Ultra-broadband reflectors covering the entire visible regime based on cascaded high-index-contrast gratings. Appl. Phys. B 126, 188 (2020). https://doi.org/10.1007/s00340-020-07542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07542-0

Navigation