Skip to main content

Advertisement

Log in

Spatial response of laser powder bed additively manufactured Ti6Al4V to temperature variation of aqueous electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrochemical response of laser powder bed additively manufactured Ti6Al4V is often considered at room-temperature conditions; however, structural Ti6Al4V components in a warm marine environment tend to respond differently. In light of this, the present work investigates the electrochemical response of the Ti6Al4V fabricated using laser powder bed fusion, in aqueous NaCl solution at varying temperatures (20, 35, and 50 \(^\circ\)C). The potentiodynamic polarization and electrochemical impedance measurement also detected the spatial variation of corrosion resistance that was rationalized using a finite-element model which indicated spatially varying thermokinetics. The pitting potential of additively manufactured Ti6Al4V was reduced significantly at 50 \(^\circ\)C (43.08 \(\%\)). The possible pitting mechanism and its thermally influenced activity were realized through the X-ray photoelectron spectroscopy. The microstructural analysis revealed the surface morphology variation within the pit region, which was correlated to the varying energy level associated with grain orientation and phases present in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Ahmad, Principles of corrosion engineering and corrosion control (Elsevier, Great Britain, 2006)

  2. B. Gunawarman, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Mechanical properties of Ti-4.5 Al-3V-2Mo-2Fe and possibility for healthcare applications. Mater. Sci. Eng. C 25, 296–303 (2005)

    Google Scholar 

  3. S. Tamilselvi, V. Raman, N. Rajendran, Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 52, 839–846 (2006)

    Google Scholar 

  4. G.-B. Cho, K.-W. Kim, H.-J. Ahn, K.-K. Cho, T.-H. Nam, Applications of Ti–Ni alloys for secondary batteries. J. Alloy Compd. 449, 317–321 (2008)

    Google Scholar 

  5. M. Amaya-Vazquez, J. Sánchez-Amaya, Z. Boukha, F. Botana, icrostructure, microhardness and corrosion resistance of remelted TiG2 and ti6al4v by a high power diode laser. Corros. Sci. 56, 36–48 (2012)

    Google Scholar 

  6. C.E. Marino, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi, Voltammetric stability of anodic films on the ti6al4v alloy in chloride medium. Electrochim. Acta 51(28), 6580–6583 (2006)

    Google Scholar 

  7. R.S. Razavi, M. Salehi, M. Ramazani, H. Man, Corrosion behavior of laser gas nitrided Ti-6Al-4V in HCl solution. Corros. Sci. 51, 2324–2329 (2009)

    Google Scholar 

  8. R. Gaddam, R. Pederson, M. Hörnqvist, M.-L. Antti, Fatigue crack growth behaviour of forged Ti-6Al-4V in gaseous hydrogen. Corros. Sci. 78, 378–383 (2014)

    Google Scholar 

  9. N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros. Sci. 102, 484–489 (2016)

    Google Scholar 

  10. J. Li, X. Lin, M. Zheng, J. Wang, P. Guo, T. Qin, M. Zhu, W. Huang, H. Yang, Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy. Electrochim. Acta 283, 1482–1489 (2018)

    Google Scholar 

  11. J.R. Chen, W.T. Tsai, In situ corrosion monitoring of Ti-6Al-4V alloy in H$_2$SO$_4$/Hcl mixed solution using electrochemical AFM. Electrochim. Acta 56(4), 1746–1751 (2011)

    Google Scholar 

  12. V. Alves, R. Reis, I. Santos, D. Souza, T.D.F. Gonçalves, M. Pereira-da Silva, A. Rossi, L. Da Silva, In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 $^{\circ }$C and 37 $^{\circ }$C. Corros. Sci. 51(10), 2473–2482 (2009)

    Google Scholar 

  13. C.E. Marino, L.H. Mascaro, EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. J. Electroanal. Chem. 568, 115–120 (2004)

    Google Scholar 

  14. N. Ibriş, J.C.M. Rosca, EIS study of Ti and its alloys in biological media. J. Electroanal. Chem. 526, 53–62 (2002)

    Google Scholar 

  15. M. Geetha, U.K. Mudali, A. Gogia, R. Asokamani, B. Raj, Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy. Corros. Sci. 46, 877–892 (2004)

    Google Scholar 

  16. F.E.-T. Heakal, A. Ghoneim, A. Mogoda, K. Awad, Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions. Corros. Sci. 53, 2728–2737 (2011)

    Google Scholar 

  17. N. Hopkinson, R. Hague, P. Dickens, Rapid Manufacturing: an Industrial Revolution for the Digital Age (Wiley, New York, 2006)

    Google Scholar 

  18. M. Cabrini, S. Lorenzi, C. Testa, T. Pastore, D. Manfredi, M. Lorusso, F. Calignano, P. Fino, Statistical approach for electrochemical evaluation of the effect of heat treatments on the corrosion resistance of AlSi10Mg alloy by laser powder bed fusion. Electrochim. Acta 305, 459–466 (2019)

    Google Scholar 

  19. D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J.O. Suh, A.A. Shapiro, Z.K. Liu, J.P. Borgonia, Developing gradient metal alloys through radial deposition additive manufacturing. Sci. Rep. 4, 5357 (2014)

    Google Scholar 

  20. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater. 114, 33–42 (2016)

    ADS  Google Scholar 

  21. H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int. J. Mach. 133, 85–102 (2018)

    Google Scholar 

  22. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2, 041101 (2015)

    ADS  Google Scholar 

  23. T.M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang, H. Castaneda, Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing. Electrochim. Acta 279, 143–151 (2018)

    Google Scholar 

  24. H. Attar, K. Prashanth, A. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 142, 38–41 (2015)

    Google Scholar 

  25. H. Attar, M. Calin, L. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 593, 170–177 (2014)

    Google Scholar 

  26. H. Attar, M. Bönisch, M. Calin, L.-C. Zhang, S. Scudino, J. Eckert, Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22 (2014)

    ADS  Google Scholar 

  27. R. Thomas, Titanium in geothermal industry. Geothermics 32(4–6), 679–687 (2003)

  28. T. Sawase, A. Wennerberg, K. Baba, Y. Tsuboi, L. Sennerby, C.B. Johansson, T. Albrektsson, Application of oxygen ion implantation to titanium surfaces: effects on surface characteristics, corrosion resistance, and bone response. Clini. IMPLANT Dent. R. 3, 221–229 (2001)

    Google Scholar 

  29. M. Long, H. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18), 1621–1639 (1998)

    Google Scholar 

  30. M. Bahraminasab, M. Hassan, B. Sahari, Metallic biomaterials of knee and hip—a review. Trends Biomater. Artif. Organs 24, 69–82 (2010)

    Google Scholar 

  31. K. Moiduddin, S.H. Mian, U. Umer, H. Alkhalefah, Fabrication and analysis of a Ti6Al4V implant for cranial restoration. Appl. Sci. 9(12), 2513 (2019)

    Google Scholar 

  32. A.L. Jardini, M.A. Larosa, R. Maciel Filho, C.A. de Carvalho Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Craniomaxillofac. Surg. 42, 1877–1884 (2014)

    Google Scholar 

  33. A.L.R. Ribeiro, P. Hammer, L.G. Vaz, L.A. Rocha, Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental application: an electrochemical corrosion study. Biomed. Mater. 8(6), 065005 (2013)

    ADS  Google Scholar 

  34. G. Chahine, M. Koike, T. Okabe, P. Smith, R. Kovacevic, The design and production of Ti-6Al-4V ELI customized dental implants. JOM 60, 50–55 (2008)

    Google Scholar 

  35. L. Chen, J. Huang, C. Lin, C. Pan, S. Chen, T. Yang, D. Lin, H. Lin, J. Jang, Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater. Sci. Eng. A 682, 389–395 (2017)

    Google Scholar 

  36. N. Dai, L.-C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 111, 703–710 (2016)

    Google Scholar 

  37. J. Pan, C. Leygraf, D. Thierry, A. Ektessabi, Corrosion resistance for biomaterial applications of TiO$_2$ films deposited on titanium and stainless steel by ion-beam-assisted sputtering. Jpn. Soc. Biomater. 1997(35), 309–318 (1997)

    Google Scholar 

  38. I. Gurrappa, Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 51(2—-3), 131–139 (2003)

    Google Scholar 

  39. M. Simonelli, Y. Tse, C. Tuck, Further understanding of Ti-6Al-4V selective laser melting using texture analysis. J. Phys. Conf. Ser. 371, 1–4 (2012)

    Google Scholar 

  40. M.V. Pantawane, Y.H. Ho, S.S. Joshi, N.B. Dahotre, Computational assessment of thermokinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti6Al4V alloy. Sci. Rep. 10(1), 1–14 (2020)

  41. S. Nijjer, J. Thonstad, G. Haarberg, Cyclic and linear voltammetry on Ti/iro2-ta2o5-mnox electrodes in sulfuric acid containing mn2+ ions. Electrochim. Acta 46(23), 3503–3508 (2001)

    Google Scholar 

  42. Y. Chen, J. Zhang, N. Dai, P. Qin, H. Attar, L.-C. Zhang, Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim. Acta 232, 89–97 (2017)

    Google Scholar 

  43. J. Elmer, T. Palmer, S. Babu, E. Specht, In situ observations of lattice expansion and transformation rates of $\alpha $ and $\beta $ phases in Ti-6Al-4V. Mater. Sci. Eng. A 391(1–2), 104–113 (2005)

    Google Scholar 

  44. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Des. 108, 308–318 (2016)

    Google Scholar 

  45. J. Yang, H. Yang, H. Yu, Z. Wang, X. Zeng, Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall. Mater. Trans. A 48(7), 3583–3593 (2017)

    Google Scholar 

  46. M. Shirkhanzadeh, Xps characterization of superplastic TiO2 coatings prepared on ti6al4v surgical alloy by an electrochemical method. J. Mater. Sci. Mater. Med. 6(4), 206–210 (1995)

    Google Scholar 

  47. R. Schenk, The corrosion properties of titanium and titanium alloys, in Titanium in medicine (Springer, New York, 2001)

Download references

Acknowledgements

The authors acknowledge the facility and financial support of the Center for Agile and Adaptive Additive Manufacturing (CAAAM) at the University of North Texas (UNT). The authors also acknowledge the availability of the analytical facility for this work in the Materials Research Facility (MRF) at UNT.

Funding

The authors acknowledge the facility and financial support of the Center for Agile and Adaptive Additive Manufacturing (CAAAM) at the University of North Texas (UNT) funded through the State of Texas appropriation (190405-105-805008-220).

Author information

Authors and Affiliations

Authors

Contributions

SM conceived the idea, carried out the experiment, and is the principle author of this manuscript. MVP carried out the computational modeling and simulations, YHH helped in several characterization techniques, and NBD reviewed the whole work before submission.

Corresponding author

Correspondence to Narendra B. Dahotre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, S., Pantawane, M.V., Ho, YH. et al. Spatial response of laser powder bed additively manufactured Ti6Al4V to temperature variation of aqueous electrolyte. Appl. Phys. A 126, 902 (2020). https://doi.org/10.1007/s00339-020-04082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04082-4

Keywords

Navigation