Skip to main content
Log in

Graded bandgap nanostructured SnS-based photocells

  • T.C. : Solar Energy Materials and Applications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin sulfide SnS, SnS2 thin films have been fabricated and investigated for solar cell application as prospective inexpensive and environmentally safe material. Today, SnSx-based single bandgap and tandem solar cell designs demonstrate promising results as environment-friendly and cheap alternative to common Si, CdTe, CIGS cells. To enhance further the solar spectrum utilization, the graded bandgap structures are preffered. The chemical deposition of tin sulfide films presents a low-cost and scalable processing for thin-film solar cells mass production. In the paper, the successive ionic layer adsorption and reaction (SILAR) technique was used to produce SnSx layers, including successive cyclic dipping into Na2S and SnCl2 + NaCl + triethanolamine solutions. The XRD measurements reveal the SnS, SnS2 layers formation with nanograins micromorphology. The optical transmission measurements show the variable bandgap values depending, presumably, on the nanograins size. In this study, we propose and analyse, using SCAPS code simulation, a simple graded bandgap heterostructure solar cell structure based on nanostructured bandgap-engineered SnS/SnS2 active layers showing conversion efficiency up to ~ 14% for non-graded and ~ 16% for graded bandgap heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.G. Moon, Sh. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn, Y.S. Cho, Sol. Energy Mater. Sol. Cells 200, 109963 (2019)

    Article  Google Scholar 

  2. L. Yin, G. Cheng, Y. Feng, Z. Li, C. Yang, X. Xiao, RSC Adv. 5, 40369 (2015)

    Article  Google Scholar 

  3. J. Just, C.M. Sutter-Fella, D. Lutzenkirchen-Hecht, R. Frahm, S. Schorr, T. Unold, Phys. Chem. Chem. Phys. 18, 15988 (2016)

    Article  Google Scholar 

  4. P.D. Matthews, P.D. McNaughter, D.J. Lewis, P. O’Brien, Chem. Sci. 8, 4177 (2017)

    Article  Google Scholar 

  5. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Adv. Energy Mater. 4, 1400496 (2014)

    Article  Google Scholar 

  6. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Chem. Mater. 25, 4908 (2013)

    Article  Google Scholar 

  7. N. Koteeswara Reddy, M. Devika, E.S.R. Gopal, Crit. Rev. Solid State Mater. Sci. 40(6), 359 (2015)

    Article  ADS  Google Scholar 

  8. J.R. Brent, D.J. Lewis, T. Lorenz, E.A. Lewis, N. Savjani, S.J. Haigh, G. Seifert, B. Derby, P. O’Brien, J. Am. Chem. Soc. 137, 12689 (2015)

    Article  Google Scholar 

  9. H. Nozaki, I. Imai, Phys. B C 105(1–3), 74 (1981)

    Article  ADS  Google Scholar 

  10. B. Sainbileg, M. Hayashi, Chem. Phys. 522, 59 (2019)

    Article  Google Scholar 

  11. U. Chalapathi, B. Poornaprakash, B.P. Reddy, S.-H. Park, Thin Solid Films 640, 81 (2017)

    Article  ADS  Google Scholar 

  12. J.H. Kim, S.J. Yun, H.S. Lee, Sci. Rep. 8, 10284 (2018)

    Article  ADS  Google Scholar 

  13. A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, Thin Solid Films 480–481, 452 (2005)

    Article  Google Scholar 

  14. J.-H. Ahn, M.-J. Lee, H. Heo, J.H. Sung, K. Kim, H. Hwang, M.-H. Jo, Nano Lett. 15(6), 3703 (2015)

    Article  ADS  Google Scholar 

  15. H. Song, H. Wu, Y. Gao, K. Wang, X. Su, S. Yan, Y. Shi, Nanomaterials 9(9), 1244 (2019)

    Article  Google Scholar 

  16. M. Hu, H. Zhang, L. Yang, R. Lv, Carbon 143, 21 (2019)

    Article  Google Scholar 

  17. M. Ristov, G.J. Sinadinovski, I. Grozdanov, Thin Solid Films 123(1), 63 (1985)

    Article  ADS  Google Scholar 

  18. H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27(2), 85 (2004)

    Article  Google Scholar 

  19. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  Google Scholar 

  20. P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math. Phys. Kl. 98–100 (1918)

  21. E.A. Outkina, A.I. Vorobyova, A.A. Khodin, in Physics, chemistry and application of nanostructures: reviews and short notes. Nanomeeting-2017, ed. By V.E. Borisenko, S.V. Gaponenko, V.S. Gurin (World Scientific, 2017), p. 499

  22. A. Khodin, J.K. Lee, C.S. Kim, S.O. Kim, Mater. Lett. 63, 2552 (2009)

    Article  Google Scholar 

  23. K.T.R. Reddy, G. Sreedevi, R.W. Miles, J. Mater. Sci. Eng. A3(3), 182 (2013)

    Google Scholar 

  24. P. Jain, P. Arun, arXiv: 1207.2830v2 [cond-mat.mtrl-sci] (2012)

  25. A.I. Ekimov, A.A. Onushchenko, Sov. JETP Lett. 34, 345 (1981)

    ADS  Google Scholar 

  26. Y. Kayanuma, Phys. Rev. B 38(14), 9797 (1988)

    Article  ADS  Google Scholar 

  27. Y. Gong, H. Yuan, C.-L. Wu, P. Tang, S.-Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M.L. Brongersma, M.F. Chisholm, S.-C. Zhang, W. Zhou, Y. Cui, Nat. Nanotechnol. 13, 294 (2018)

    Article  ADS  Google Scholar 

  28. M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361–362, 527 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Outkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Outkina, E.A., Vorobyova, A.I. & Khodin, A.A. Graded bandgap nanostructured SnS-based photocells. Appl. Phys. A 126, 899 (2020). https://doi.org/10.1007/s00339-020-04081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04081-5

Keywords

Navigation