Skip to main content
Log in

Enhancement of Mn-doped magnetite by mesoporous silica for technological application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mn0.6Fe2.4O4 was synthesized by the co-precipitation method. A simple method was developed for preparing Mn0.6Fe2.4O4@SiO2 nanocomposite via few steps. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) images, BET surface area measurements were used to characterize the physical structures of the investigated samples. The crystallite size of the nanocomposite is greater than that of the parent sample. The dielectric constant (ε/) of the Mn0.6Fe2.4O4 is greater than that of the sample Mn0.6Fe2.4O4@SiO2. The investigated samples have a semiconductor-like behavior with two different conduction mechanisms. M-H loops of the samples show ferrimagnetic properties. Mesoporous silica increased the coercive field and decreases the values of both Ms and Mr of Mn0.6Fe2.4O4. Mn0.6Fe2.4O4@SiO2 nanocomposite exhibits higher removal efficiency than Mn0.6Fe2.4O3. The maximum removal of the heavy metals is observed for Pb2+ and Cr6+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Zhang, J. Han, M. Wang, R. Guo, Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A 5, 4058–4066 (2017)

    Google Scholar 

  2. J. Wang, P. Zhu, J. Wang, S.W. Or, S.L. Ho, J. Tan, Interchange core/shell assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 for microwave absorption. AIP Adv. 7, 055811 (2017)

    ADS  Google Scholar 

  3. M. Kamali, D.P. Suhas, M.E. Costab, I. Capela, T.M. Aminabhavi, Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem. Eng. J. 368, 474–494 (2019)

    Google Scholar 

  4. N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli, Competition between the impact of cation distribution and crystallite size on properties of MnxFe3−xO4 nanoparticles synthesized at room temperature. Ceramics Int. 43, 15381–15391 (2017)

    Google Scholar 

  5. X. Liu, J. Li, S. Zhang, Z. Nan, Q. Shi, Structural, magnetic, and thermodynamic evolutions of Zn-Doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method. J. Phys. Chem. C 120, 1328–1341 (2016)

    Google Scholar 

  6. J. Thomas, N. Thomas, F. Girgsdies, M. Beherns, X. Huang, V.D. Sudheesh, V. Sebastian, Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation. New J. Chem. 15 (2017). https://doi.org/10.1039/C7NJ00558J

  7. V.A.M. Brabers, Infrared spectra of cubic and tetragonal manganese ferrites. Phys. Status Solidi 33, 563 (1969)

    Google Scholar 

  8. G. Schröder, H. Thomas, Structural phase transition induced by the Jahn-Teller effect Antiferrodistortive ordering. Phys. Rev. 25, 32 (1976)

    Google Scholar 

  9. C.-W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials (Dover publications INC, New York, 1977)

    Google Scholar 

  10. M. Kamali, K.M. Persson, M.E. Costa, I. Capela, Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environ. Int. 125, 261–276 (2019)

    Google Scholar 

  11. N.M. Noor, R. Othman, N.M. Mubarak, E.C. Abdullah, Agricultural biomass-derived magnetic adsorbents: preparation and application for heavy metals removal. J. Taiwan Inst. Chem. Eng. 78, 168–177 (2017)

    Google Scholar 

  12. S. Martinez-Vargas, A.I. Martínez, E.E. Hernández-Beteta, O.F. Mijangos-Ricardez, J. López-Luna, As(III) and As(V) adsorption on manganese ferrite nanoparticles. J. Mol. Struct. 1154, 524–534 (2018)

    ADS  Google Scholar 

  13. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupt, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Google Scholar 

  14. W. Ting, S. Ai, Y. Zhou, Z. Luo, C. Dai, Y. Yang, J. Zhang, H. Huang, S. Luo, L. Luo, Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 6, 6194–6206 (2018)

    Google Scholar 

  15. F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, Application of magnetic ferrite nanoparticles for removal of Cu(II) from copper-ammonia wastewater. J. Alloy. Compd. 773, 140–149 (2019)

    Google Scholar 

  16. Mu. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 330, 1351–1360 (2017)

    Google Scholar 

  17. W.-C. Yang, Q.-Z. Tang, S.-y Dong, L.-Y. Chai, H.-Y. Wang, Single-step synthesis of magnetic chitosan composites and application for chromate (Cr(VI)) removal. J. Cent. South Univ. 23, 317–323 (2016)

    Google Scholar 

  18. H. Shekari, M.H. Sayadi, M.R. Rezaei, A. Allahresani, Synthesis of nickel ferrite/titanium oxide magnetic nanocomposite and its use to remove hexavalent chromium from aqueous solutions. Surf. Interfaces 8, 199–205 (2017)

    Google Scholar 

  19. L. Yang, T. Wen, L. Wang, T. Miki, H. Bai, X. Lu, H. Yu, T. Nagasaka, The stability of the compounds formed in the process of removal Pb (II), Cu (II) and Cd (II) by steelmaking slag in an acidic aqueous solution. J. Environ. Manage. 231, 41–48 (2019)

    Google Scholar 

  20. W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017)

    Google Scholar 

  21. M.A. Ahmed, S.T. Bishay, S.M. Abd-Elwahab, R. Ramadan, Removing lead ions from water by using nanocomposite (rare earth oxide/alumina). J. Mol. Liquids 240, 604–612 (2017)

    Google Scholar 

  22. M.A. Ahmed, S.T. Bishay, R. Ramadan, Water detoxification using gamma and alfa alumina nanoparticles prepared by micro emulsion route. Nanosci. Technol. 9, 064–074 (2015)

    Google Scholar 

  23. J.C. Lou, C.K. Chang, Completely treating heavy metal laboratory waste liquid by an improved ferrite process. Sep. Purif. Technol. 57, 513–518 (2007)

    Google Scholar 

  24. E. Darezereshki, A.K. Darban, M. Abdollahy, A. Jamshidi-Zanjani, Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: kinetics and thermodynamic. Environ. Nanotechnol. Monit. Manage. 10, 51–62 (2018)

    Google Scholar 

  25. E.E. Ateia, R. Ramadan, B. Hussein, Studies on multifunctional properties of GdFe1xCoxO3multiferroics. Appl. Phys. A 26, 340 (2020). https://doi.org/10.1007/s00339-020-03518-1

    Article  ADS  Google Scholar 

  26. M.K. Ahmeda, R. Ramadanb, M. Afific, A.A. Menazea, Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J Materrestechnol. 9, 8854–8866 (2020)

    Google Scholar 

  27. E.E. Ateia, R. Ramadan, A.S. Shafaay, Efficient treatment of lead-containing wastewater by CoFe2O4/graphene nanocomposites. Appl. Phys. A 126, 222 (2020). https://doi.org/10.1007/s00339-020-3401-3

    Article  ADS  Google Scholar 

  28. M.M. Arman, R. Ramadan, Optical, magnetic, and electrical studies of nanometricBi1−xNdxFeO3 Perovskite. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05441-1

    Article  Google Scholar 

  29. H. Li, X. Li, Y. Chen, J. Long, G. Zhang, T. Xiao, P. Zhang, C. Li, L. Zhuang, W. Huang, Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. J. Cleaner Prod. 199, 705–715 (2018)

    Google Scholar 

  30. S. Sobhanardakani, A. Jafari, R. Zandipak, A. Meidanchi, Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf. Environ. Prot. 120, 348–357 (2018)

    Google Scholar 

  31. S. Jin, B.C. Park, W.S. Ham, L. Pan, Y.-G. Kim, Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous SiO2 core-shell nanoparticles on the removal of heavy metal ions. Colloids Surf. A Physicochem. Eng. Aspects 531, 133–140 (2017)

    Google Scholar 

  32. J. Liua, Y. Chena, T. Hanb, M. Chenga, W. Zhanga, J. Long, X. Fu, A biomimetic SiO2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water. Chemosphere 214, 738–742 (2019)

    ADS  Google Scholar 

  33. T. Kodama, M. Ookubo, S. Miura, Y. Kitayama, Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3−xO4 by coprecipitation. Mater. Res. Bull. 31, 1501–1512 (1996)

    Google Scholar 

  34. W.G. Hozayen, A.M. Mahmoud, E.M. Desouky, E.S. El-Nahass, H.A. Soliman, A.A. Farghali, Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed. Pharmacother. 109, 2527–2538 (2019)

    Google Scholar 

  35. B.D. Cullity, Element of X- Ray Diffraction (Addison-Wesley Publishing Company Inc, London, 1978)

    MATH  Google Scholar 

  36. S. Agrawala, A. Parveen, A. Azam, Electrical and thermal properties of Ca and Ni doped barium ferrite. Proc. Mater. Sci. 10, 168–175 (2015)

    Google Scholar 

  37. R.A. Mondal, B.S. Murty, V.R.K. Murthy, Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. Appl. Phys. 14, 1727–1733 (2014)

    ADS  Google Scholar 

  38. A. Radoń, A. Radoń, D. Lukowiec, D. Lukowiec, M. Kremzer, P. Wlodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Prog. Nat. Sci. Mater. Int. 25, 419–424 (2015)

    Google Scholar 

  39. A. Mitra, A.S. Mahapatra, Improved magneto-electric properties of LaFeO3 in La0.8Gd0.2Fe0.97Nb0.03O3. Ceramics Int. 44, 4442–4449 (2018)

    Google Scholar 

  40. Y. Li, H. Zhang, Z. Huang, E. Bilotti, T. Peijs, Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties. Compos. Part A. 89, 40–46 (2016)

    Google Scholar 

  41. J.S. Kim, H.J. Lee, S.Y. Lee, I.W. Kim, S.D. Lee, Frequency and temperature dependence of dielectric and electrical properties of radio-frequency sputtered lead-free K0.48Na0.52NbO3 thin films. Solid Films 518, 6390–6393 (2010)

    ADS  Google Scholar 

  42. L.J. Berchmans, R. Sindhu, S. Angappan, C. Augustin, Effect of antimony substitution on structural and electrical properties of LaFeO3. J. Mater. Proc. Technol. 207, 301–306 (2008)

    Google Scholar 

  43. S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)

    ADS  Google Scholar 

  44. A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel, M.P. Graça, L.C. Costa, AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites. J. Mol. Liq. 209, 272–279 (2015)

    Google Scholar 

  45. R. Dhanaraju, M.K. Raju, V. Brahmajirao, S. Bangarraju, Study of substituted hexaferrites and their composites for high frequency applications. Int. J. Sci. Technol 1, 275–285 (2012)

    Google Scholar 

  46. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev 107, 2891–2959 (2007)

    Google Scholar 

  47. M. Li, Q. Gao, T. Wang, Y.S. Gong, B. Han, K.S. Xia, C.G. Zhou, Solvothermal synthesis of MnxFe3−xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Mater. Des. 97, 341–348 (2016)

    Google Scholar 

  48. J. Chen, Y. Zhou, X. Ke, Y. Lv, Y. Li, S. Populoh, N. Chen, X. Shi, L. Chen, Y. Jiang, Electrical transportation performances of Nb–SrTiO3 regulated by the anion related chemical atmospheres. Mater. Des. 97, 7–12 (2016)

    Google Scholar 

  49. F.K. Lotger, Modern trends in physics. J. Phys. Chem. Solids 25, 345 (1964)

    Google Scholar 

  50. S. Tekeli, M. Erdogan, B. Aktas, Microstructural evolution in 8 mol% Y2O3-stabilized cubic zirconia (8YSCZ) with SiO2 addition. J. Matér. Sci. Eng. B 386, 1–9 (2004)

    Google Scholar 

  51. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32A, 751 (1976)

    ADS  Google Scholar 

  52. H. Bamnolker, B. Nitzan, S. Gura, S. Margel, New solid and hollow, magnetic and non-magnetic, organic-inorganic monodispersed hybrid microspheres: synthesis and characterization. Mater. Lett. 16, 1412 (1997)

    Google Scholar 

  53. A. Lakshman, K.H. Rao, R.G. Mendiratt, Magnetic properties of In3+ and Cr3+ substituted Mg–Mn ferrites. J. Magn. Magn. Mater. 250, 92 (2002)

    ADS  Google Scholar 

  54. F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids 1 (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  55. H. Tang, W. Zhou, L. Zhang, Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. J. Hazard. Mater. 209–210, 218–225 (2012)

    Google Scholar 

  56. R. Soltani, A. Marjani, S. Shirazian, Shell-in-shell monodispersed triamine-functionalized SiO2 hollow microspheres with micro-mesostructured shells for highly efficient removal of heavy metals from aqueous solutions. J. Environ. Chem. Eng. 7, 102832 (2019)

    Google Scholar 

  57. W.M.A. El Rouby, S.I. El-Dek, M.E. Goher, S.G. Noaemy, Efficient water decontamination using layered double hydroxide beads nanocomposites. Environ. Sci. Pollut. Res. 3, 1–19 (2018)

    Google Scholar 

  58. M.A. Ahmed, S.M. Ali, S.I. El-Dek, A. Galal, Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng., B 178, 744–751 (2013)

    Google Scholar 

  59. R.N. Bharagava, Environmental pollutants and their bioremediation approaches. Appl. Clay Sci. 32, 245–251 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Ramadan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, R., El-Dek, S.I. & Arman, M.M. Enhancement of Mn-doped magnetite by mesoporous silica for technological application. Appl. Phys. A 126, 900 (2020). https://doi.org/10.1007/s00339-020-04059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04059-3

Keywords

Navigation