Skip to main content
Log in

Controlling microstructure and significantly increased dielectric permittivity with largely reduced dielectric loss in CaCu3−xGexTi4O12 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microstructure, dielectric, and electrical properties of CaCu3−xGexTi4O12 ceramics with x = 0–0.10 prepared by a conventional solid-state reaction method are investigated. Single-phase of CaCu3Ti4O12 was detected in all sintered ceramics. The substitution of Ge4+ into Cu2+ sites results in the grain size of CaCu3−xGexTi4O12 ceramics to decrease, compared to CaCu3Ti4O12 ceramic. Unusually, although grain sizes of CaCu3−xGexTi4O12 ceramics decrease, their dielectric permittivity is increased by doping. Enhanced dielectric permittivity ~ 35,000–42,000 with reduced loss tangent ~ 0.037–0.053 was achieved in x = 0.025–0.10. Improved dielectric properties with reduced loss tangent might be originated by enhanced grain boundary response, especially the largely increased grain boundary resistance. The result obtained from an impedance spectroscopy technique indicates the formation of an internal barrier layer capacitor model in all sintered ceramics. The giant dielectric permittivity of CaCu3−xGexTi4O12 ceramics might be caused by intrinsically compensating mechanisms of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, S. Du, Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J. Alloys Compd. 773, 853–859 (2019)

    Article  Google Scholar 

  2. H. Lin, X. He, Y. Gong, D. Pang, Z. Yi, Tuning the nonlinear current-voltage behavior of CaCu3Ti4O12 ceramics by spark plasma sintering. Ceram. Int. 44(7), 8650–8655 (2018)

    Article  Google Scholar 

  3. C. Xu, X. Zhao, L. Ren, J. Sun, L. Yang, J. Guo, R. Liao, Enhanced electrical properties of CaCu3Ti4O12 ceramics by spark plasma sintering: role of Zn and Al co-doping. J. Alloys Compd. 792, 1079–1087 (2019)

    Article  Google Scholar 

  4. D. Xu, X. Yue, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, S. Du, Improved dielectric and non-ohmic properties of (Zn+Zr) co-doped CaCu3Ti4O12 thin films. Ceram. Int. 45(9), 11421–11427 (2019)

    Article  Google Scholar 

  5. L. Ren, L. Yang, C. Xu, X. Zhao, R. Liao, Improvement of breakdown field and dielectric properties of CaCu3Ti4O12 ceramics by Bi and Al co-doping. J. Alloys Compd. 768, 652–658 (2018)

    Article  Google Scholar 

  6. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, Significantly improved giant dielectric response in giant dielectric response in CaCu2.95Ni0.05Ti4−xGexO12 (x=005, 010) ceramics. Mater. Today Commun. 21, 100633 (2019)

    Article  Google Scholar 

  7. J. Boonlakhorn, P. Thongbai, B. Putasaeng, P. Kidkhunthod, S. Maensiri, P. Chindaprasirt, Microstructural evolution, non-ohmic properties, and giant dielectric response in CaCu3Ti4−xGexO12 ceramics. J. Am. Ceram. Soc. 100(8), 3478–3487 (2017)

    Article  Google Scholar 

  8. S. De Almeida-Didry, M.M. Nomel, C. Autret, C. Honstettre, A. Lucas, F. Pacreau, F. Gervais, Control of grain boundary in alumina doped CCTO showing colossal permittivity by core-shell approach. J. Eur. Ceram. Soc. 38(9), 3182–3187 (2018)

    Article  Google Scholar 

  9. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, Investigation of the dielectric properties and nonlinear electrical response of CaCu3Ti4O12 ceramics prepared by a chemical combustion method. J. Mater. Sci. 31(6), 4511–4519 (2020)

    Google Scholar 

  10. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Alloys Compd. 778, 625–632 (2019)

    Article  Google Scholar 

  11. L. Sun, Q. Ni, J. Guo, E. Cao, W. Hao, Y. Zhang, L. Ju, Dielectric properties and nonlinear I-V electrical behavior of (Li1+, Al3+) co-doped CaCu3Ti4O12 ceramics. Appl. Phys. A 124(6), 428 (2018)

    Article  ADS  Google Scholar 

  12. D. Xu, Y. Zhu, B. Zhang, X. Yue, L. Jiao, J. Song, S. Zhong, J. Ma, L. Bao, L. Zhang, Excellent dielectric performance and nonlinear electrical behaviors of Zr-doped CaCu3Ti4O12 thin films. J. Mater. Sci. 29(6), 5116–5123 (2018)

    Google Scholar 

  13. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153 (2002)

    Article  ADS  Google Scholar 

  14. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3(11), 774–778 (2004)

    Article  ADS  Google Scholar 

  15. L. Ni, X.M. Chen, Enhanced giant dielectric response in Mg-substituted CaCu3Ti4O12 ceramics. Solid State Commun. 149(9–10), 379–383 (2009)

    Article  ADS  Google Scholar 

  16. J. Zhang, J. Zheng, Y. Li, Y. Liu, W. Hao, L. Lin, Y. Li, J. Song, Effect of different pH values adjusted by ammonia on the dielectric properties of CaCu3Ti4O12 ceramics prepared by a sol-gel method. J. Alloys Compd. 779, 255–260 (2019)

    Article  Google Scholar 

  17. L. Ni, X.M. Chen, Enhancement of giant dielectric response in CaCu3Ti4O12 ceramics by Zn substitution. J. Am. Ceram. Soc. 93(1), 184–189 (2010)

    Article  Google Scholar 

  18. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. J. Solid State Chem. 151(2), 323–325 (2000)

    Article  ADS  Google Scholar 

  19. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure and enhanced dielectric response in Mg doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 663, 345–350 (2016)

    Article  Google Scholar 

  20. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv 6(61), 55984–55989 (2016)

    Article  Google Scholar 

  21. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013)

    Article  ADS  Google Scholar 

  22. E. Jansen, W. Schafer, G. Will, R values in analysis of powder diffraction data using Rietveld refinement. J. Appl. Crystallogr. 27(4), 492–496 (1994)

    Article  Google Scholar 

  23. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  24. K.-M. Kim, J.-H. Lee, K.-M. Lee, D.-Y. Kim, D.-H. Riu, S.B. Lee, Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics. Mater. Res. Bull. 43(2), 284–291 (2008)

    Article  Google Scholar 

  25. J.W. Cahn, The impurity-drag effect in grain boundary motion. Acta Metall. 10(9), 789–798 (1962)

    Article  Google Scholar 

  26. Z. Peng, P. Liang, Y. Xiang, H. Peng, X. Chao, Z. Yang, Effect of Zr doping on dielectric properties and grain boundary response of CdCu3Ti4O12 ceramics. Ceram. Int. 44(16), 20311–20321 (2018)

    Article  Google Scholar 

  27. J. Boonlakhorn, N. Chanlek, P. Thongbai, P. Srepusharawoot, Strongly Enhanced Dielectric Response and Structural Investigation of (Sr2+, Ge4+) Co-Doped CCTO Ceramics. The Journal of Physical Chemistry C 124(38), 20682–20692 (2020)

    Article  Google Scholar 

  28. J. Liu, C.-G. Duan, W.-G. Yin, W. Mei, R. Smith, J. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70(14), 144106 (2004)

    Article  ADS  Google Scholar 

  29. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 112(11), 114115 (2012)

    Article  ADS  Google Scholar 

  30. Z. Peng, D. Wu, P. Liang, X. Zhou, J. Wang, J. Zhu, X. Chao, Z. Yang, Grain Boundary Engineering that Induces Ultrahigh Permittivity and Decreased Dielectric Loss in CdCu3Ti4O12 Ceramics. J. Am. Ceram. Soc. 103(2), 1230–1240 (2020)

    Article  Google Scholar 

  31. T. Adams, D. Sinclair, A. West, Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73(9), 094124 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Synchrotron Light Research Institute, Khon Kaen University, and the Thailand Research Fund (TRF) [Grant No. BRG6180003]. This work has been partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI) and Khon Kaen University, Thailand. This work has received scholarship under the Post-Doctoral Training Program from Khon Kaen University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Thongbai.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonlakhorn, J., Chanlek, N., Srepusharawoot, P. et al. Controlling microstructure and significantly increased dielectric permittivity with largely reduced dielectric loss in CaCu3−xGexTi4O12 ceramics. Appl. Phys. A 126, 897 (2020). https://doi.org/10.1007/s00339-020-04069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04069-1

Keywords

Navigation