Skip to main content
Log in

Eggshell membrane-mediated V2O5/ZnO nanocomposite: synthesis, characterization, antibacterial activity, minimum inhibitory concentration, and its mechanism

  • T.C. Biological and Biomimetic Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The novel V2O5/ZnO nanocomposite, an antibacterial material, was synthesized through a simple, low-cost, and energy-saving approach. The eggshell membrane was used for the first time as a bio-template, reducing and stabilizing agent during this synthesis. Ammonium metavanadate and zinc nitrate hexahydrate (1:1) were the metal precursors. The synthesis involved soaking of an eggshell membrane with the metal solution at room temperature followed by the calcination. The as-prepared and synthesized V2O5/ZnO nanocomposite was characterized by thermal, spectroscopic, and microscopic techniques. Besides, this study determined the antibacterial activity (agar well-diffusion test) and minimum inhibition concentration (resazurin microdilution test) of V2O5/ZnO nanocomposite against Gram-positive bacteria (Staphylococcus aureus and Bacillus sp.) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Vibrio sp.). The annealing temperature (550 °C) for V2O5/ZnO nanocomposite was determined by the TGA-DTA study. The XRD analysis of V2O5/ZnO nanocomposite revealed the formation of both the orthorhombic (V2O5) and hexagonal wurtzite (ZnO) structures with the crystallite size of 20 nm. The FT-IR spectrum indicated the stretching vibration of V=O and Zn–O at 925 and 473 cm−1, respectively. The Raman spectra also confirmed the formation of the orthorhombic and hexagonal wurtzite structure. From DRS UV–visible spectroscopy, the optical band-gap energy of V2O5/ZnO nanocomposite was equal to 2.05 eV. The HR-SEM study of V2O5/ZnO nanocomposite depicted large spheres as well as small particles. The EDX analysis established only vanadium (32.45 wt %), oxygen (57.06 wt %), and zinc (10.48 wt %). The zeta-potential analysis of V2O5/ZnO nanocomposite showed moderate stability with a negative value of − 42.9 mV. The study of antibacterial activity exhibited a high zone of inhibition (23 mm) against the Staphylococcus aureus and Bacillus sp. at 30 μg mL−1, and the minimum inhibition concentration (MIC) value was observed in Bacillus sp. at 0.49 μg mL−1. The V2O5/ZnO nanocomposite can be employed in biomedical applications as an antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.P. Sharma, S.D. Raut, A.S. Kadam et al., (2020) In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles. Appl. Phys. A 126, 824 (2020). https://doi.org/10.1007/s00339-020-04007-1

    Article  ADS  Google Scholar 

  2. K. Karthik, M.P. Nikolova, S. Anukorn Phuruangrat, V.R. Pushpa, M. Subbulakshmi, Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov. 24(4), 229–234 (2019). https://doi.org/10.1080/14328917.2019.1634404

    Article  Google Scholar 

  3. R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Antimicrobial properties of ZnO nanomaterials: a review. Ceram. Int. 43(5), 3940–3961 (2016). https://doi.org/10.1016/j.ceramint.2016.12.062

    Article  Google Scholar 

  4. V. Stanic, S.B. Tanaskovic, Antibacterial activity of metal oxide nanoparticles nanotoxicity prevention and antibacterial applications of nanomaterials micro and nano technologies. ACS Nano 2020, 241–274 (2020). https://doi.org/10.1016/B978-0-12-819943-5.00011-7

    Article  Google Scholar 

  5. N.K. Pandey, A. Panwar, S.K. Misra, Application of V2O5-ZnO nanocomposite for humidity sensing studies. Int. J. Mater. Sci. Appl. 6(3), 119–125 (2017). https://doi.org/10.11648/j.ijmsa.20170603.12

    Article  Google Scholar 

  6. K. Sagapariya, K.N. Rathod, K. Gadani, H. Boricha, V.G. Shrimali, B. Rajyaguru, A. Donga, A.D. Joshi, D.D. Pandya, N.A. Shah, P.S. Solanki, Investigations on structural, optical and electrical properties of V2O5 nanoparticles. AIP Conf. Proc. 1837, 030006 (2017). https://doi.org/10.1063/1.4982084

    Article  Google Scholar 

  7. C.R.A. John Chelliah, R. Swaminathan, Improved optical absorption, enhanced morphological and electrochemical properties of pulsed laser deposited binary zinc and vanadium oxide thin films. J. Mater. Sci. Mater. Electron 31, 7348–7358 (2020). https://doi.org/10.1007/s10854-019-02548-7

    Article  Google Scholar 

  8. N.F. Djaja, A. Taufik, R. Saleh, Synthesized vanadium doped ZnO through the co-precipitation method. J. Phys. Conf. Ser. 1442, 012023 (2020). https://doi.org/10.1088/1742-6596/1442/1/012023

    Article  Google Scholar 

  9. P. Muniraja, K. Sunil Kumar, M. Ramanadha, A. Sudharani, R.R.P. MuchakayalaVijayalakshmi, Effect of synthesis temperature on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by combustion method. J. Supercond. Nov. Magn. 32, 2175–2183 (2019). https://doi.org/10.1007/s10948-018-4942-y

    Article  Google Scholar 

  10. M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process. 39, 23–29 (2015). https://doi.org/10.1016/j.mssp.2015.04.038

    Article  Google Scholar 

  11. H. Yin, C. Song, Z. Wang, B. Guo, K. Yu, V2O5 nanoparticles grown on ZnO nanowires for enhanced field emission properties. Appl. Surf. Sci. 345(1), 256–263 (2015). https://doi.org/10.1016/j.apsusc.2015.03.162

    Article  ADS  Google Scholar 

  12. R.T. Rasheed, H.S. Mansoor, T.A. Abdulla, T. Juzsakova, N. Al-Jammal, A.D. Salman, R.R. Al-Shaikhly, P.C. Le, E. Domokos, T.A. Abdulla, Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09725-5

    Article  Google Scholar 

  13. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z. Zhang, N. Amin, H. Zhai, Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces 19, 100502 (2020). https://doi.org/10.1016/j.surfin.2020.100502

    Article  Google Scholar 

  14. R. Yuvakkumar, S.I. Hong, Structural and toxic effect investigation of vanadium pentoxide. Mater. Sci. Eng. C 65(1), 419–424 (2016). https://doi.org/10.1016/j.msec.2016.04.066

    Article  Google Scholar 

  15. A.-Z. Fattima, J. Jasim, A. A-Ali Draea, M. J-Eweadh, Study of synthesis, characterization and biological activity for ZnO and V2O5/ZnO nan composites. Test Eng. Manag. 83, 0193–4120 (2020)

    Google Scholar 

  16. H. Sun, Z. Yang, Pu. Yanan, W. Dou, C. Wang, W. Wang, X. Hao, S. Chen, Q. Shao, M. Dong, Wu. Shide, T. Ding, Z. Guo, Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J. Colloid Interfaces Sci. 547(1), 40–49 (2019). https://doi.org/10.1016/j.jcis.2019.03.061

    Article  ADS  Google Scholar 

  17. M. Aslam, I.M.I. Ismail, T. Almeelbi, S. Numan Salah, A.H. Chandrasekaran, Enhanced photocatalytic activity of V2O5–ZnO composites for the mineralization of nitrophenols. Chemosphere 117, 115–123 (2014). https://doi.org/10.1016/j.chemosphere.2014.05.076

    Article  ADS  Google Scholar 

  18. R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014). https://doi.org/10.1016/j.molliq.2014.07.030

    Article  Google Scholar 

  19. Q. Shi, S. Wang, Wu. Haijun, Yu. Miao, F.M. XiaohuaSu, J. Jiang, Synthesis and characterizations of V2O5/ZnO nanocomposites and enhanced photocatalytic activity. Ferroelectrics 523(1), 74–81 (2018). https://doi.org/10.1080/00150193.2018.1391563

    Article  Google Scholar 

  20. P. Shukla, J.K. Shukla, Facile sol-gel synthesis and enhanced photocatalytic activity of the V2O5-ZnO nanoflakes. J. Sci. Adv. Mater. Dev. 3(4), 452–455 (2018). https://doi.org/10.1016/j.jsamd.2018.09.005

    Article  Google Scholar 

  21. J. Singh, R.C. Singh, Structural, optical, dielectric and transport properties of ball mill synthesized ZnO-V2O5 nano-composites. J. Mol. Struct. 1215, 128261 (2020). https://doi.org/10.1016/j.molstruc.2020.128261

    Article  Google Scholar 

  22. T. Ranjani, D. Raj, L. Shree, S. Priya, A. Sridharan, Studies on magnetron-sputtered V2O5/ZnO thin films. Emerg. Mater. Res. 4, 277–285 (2015). https://doi.org/10.1680/jemmr.15.00006

    Article  Google Scholar 

  23. H. Yin, K. Yu, J. Hu, C. Song, B. Guo, Z. Wang, Z. Zhu, Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods. Dalton Trans 44, 4671–4678 (2015). https://doi.org/10.1039/c5dt00015g

    Article  Google Scholar 

  24. C.W. Zou, Y.F. Rao, A. Alyamani, W. Chu, M.J. Chen, D.A. Patterson, E.A.C. Emanuelsson, W. Gao, Heterogeneous lollipop-like V2O5/ZnO array: a promising composite nanostructure for visible light photocatalysis. Langmuir Lett. 24(14), 11615–11620 (2010). https://doi.org/10.1021/la101324e

    Article  Google Scholar 

  25. T. Sinha, M. Ahmaruzzaman, High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach. J. Colloid Interface Sci. 453, 115–131 (2015). https://doi.org/10.1016/j.jcis.2015.04.053

    Article  ADS  Google Scholar 

  26. J. Celina-Selvakumari, S.T. Nishanthi, J. Dhanalakshmi, M. Ahila, D. Pathinettam-Padiyan, Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl. Surf. Sci. 441, 530–537 (2018). https://doi.org/10.1016/j.apsusc.2018.02.043

    Article  ADS  Google Scholar 

  27. Q. Dong, H. Su, J. Xu, D. Zhang, R. Wang, Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Mater. Lett. 61(13), 2714–2717 (2007). https://doi.org/10.1016/j.matlet.2006.06.091

    Article  Google Scholar 

  28. X. He, D.-P. Yanga, X. Zhang, M. Liu, Z. Kang, C. Lin, N. Jia, R. Luque, Waste eggshell membrane-templated CuO-ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem. Eng. J. 369, 621–633 (2019). https://doi.org/10.1016/j.cej.2019.03.047

    Article  Google Scholar 

  29. S. Albohani, M. Minakshi Sundaram, D.W. Laird, Egg shell membrane template stabilises formation of β-NiMoO4 nanowires and enhances hybrid supercapacitor behaviour. Mater. Lett. 236, 64–68 (2018). https://doi.org/10.1016/j.matlet.2018.10.034

    Article  Google Scholar 

  30. P.S. Devi, S. Banerjee, S.R. Chowdhury, G.S. Kumar, Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2, 11578–11585 (2012). https://doi.org/10.1039/C2RA21053C

    Article  ADS  Google Scholar 

  31. B. Zheng, L. Qian, H. Yuan, D. Xiaoa, X. Yangc, M.C. Paaud, M.M.F. Choid, Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1), 177–183 (2010). https://doi.org/10.1016/j.talanta.2010.04.014

    Article  Google Scholar 

  32. Q. Dong, D.Z. HuilanSu, Na. Zhu, X. Guo, Biotemplate-directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures. Scrip. Mater. 55(9), 799–802 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.012

    Article  Google Scholar 

  33. S. Fan, M. Zhao, L. Ding, J. Liang, J. Chen, Y. Li, S. Chen, Synthesis of 3Dhierarchical porous Co3O4 film by egg shell membrane for non-enzymatic glucose detection. J. Electroanal. Chem. 775, 52–57 (2016). https://doi.org/10.1016/j.jelechem.2016.05.035

    Article  Google Scholar 

  34. J. Li, D. Zhai, F. Lv, Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 36, 254–266 (2016). https://doi.org/10.1016/j.actbio.2016.03.011

    Article  Google Scholar 

  35. M. Liang, R. Su, W. Qi, Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49, 1639–1647 (2014). https://doi.org/10.1007/s10853-013-7847-y

    Article  ADS  Google Scholar 

  36. M. Prekajski, B. Babic, D. Bcevac, J. Pantic, J. Gulicovski, M. Miljkovic, B. Matovic, Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template. Process. Appl. Ceram. 8(2), 81–85 (2014). https://doi.org/10.2298/PAC1402081P

    Article  Google Scholar 

  37. Qi. Wang, C. Ma, J. Tang, C. Zhang, L. Ma, Eggshell membrane-templated MnO2 nanoparticles: facile synthesis and tetracycline hydrochloride decontamination. Nanoscale Res. Lett. 13, 255 (2018). https://doi.org/10.1186/s11671-018-2679-y

    Article  ADS  Google Scholar 

  38. R. Camaratta, A.N.C. Lima, M.D. Reyes, M.A. Hernandez-Fenollosa, J. Orozco-Messana, C.P. Bergmann, Microstructural evolution and optical properties of TiO2 synthesized by eggshell Membrane templating for DSSCs application. Mater. Res. Bull. 48(4), 1569–1574 (2013). https://doi.org/10.1016/j.materresbull.2012.12.047

    Article  Google Scholar 

  39. N. Song, H. Jiang, T. Cui, L. Chang, X. Wang, Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro Nano Lett. 7(9), 943–946 (2012). https://doi.org/10.1049/mnl.2012.0631

    Article  Google Scholar 

  40. P.S. Sundara Selvam, G.S. Chinnadurai, D. Ganesan et al., Cadmium oxide-zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01688-2

    Article  Google Scholar 

  41. C. Valgas, S.M. de Souza, E.F.A. Smânia, A. Smânia Jr., Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007). https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  42. S.D. Sarker, L. Nahar, Y. Kumarasamy, Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 4, 321–324 (2007). https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  Google Scholar 

  43. T. Dippong, O. Cadar, E. Andrea-Levei, I. Grigore-Deac, Microstructure, porosity and magnetic properties of Zn0.5Co0.5Fe2O4/SiO2 nanocomposites prepared by sol-gel method using different polyols. J. Magn. Magn. Mater. 498, 166168 (2019). https://doi.org/10.1016/j.jmmm.2019.166168

    Article  Google Scholar 

  44. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, F. Goga, G. Borodi, L. Barbu-Tudoran, Influence of polyol structure and molecular weight on the shape and properties of Ni0.5Co0.5Fe2O4 nanoparticles obtained by sol-gel synthesis. Ceram. Int. 45(6), 7458–7467 (2019). https://doi.org/10.1016/j.ceramint.2019.01.037

    Article  Google Scholar 

  45. T. Dippong, D. Toloman, E.-A. Levei, O. Cadar, A. Mesaros, A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites. Thermochim. Acta 666, 103–105 (2018). https://doi.org/10.1016/j.tca.2018.05.021

    Article  Google Scholar 

  46. T. Dippong, E. Levei, O. Cadar et al., Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J. Therm. Anal. Calorim. 136, 1587–1596 (2019). https://doi.org/10.1007/s10973-019-08117-8

    Article  Google Scholar 

  47. M. Stefanescu, M. Stoia, C. Caizer et al., Preparation of CoxFe3−xO4 nanoparticles by thermal decomposition of some organo-metallic precursors. J. Therm. Anal. Calorim. 97, 245 (2009). https://doi.org/10.1007/s10973-009-0250-x

    Article  Google Scholar 

  48. T. Dippong, O. Cadar, E.A. Levei, I.-G. Deac, G. Borodi, Formation of CoFe2O4/PVA-SiO2 nanocomposites: effect of diol chain length on the structure and magnetic properties. Ceram. Int. 44(9), 10478–10485 (2018). https://doi.org/10.1016/j.ceramint.2018.03.065

    Article  Google Scholar 

  49. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Hydrothermal synthesis and structural properties of V2O5nanoflowers at low temperatures. IOP Conf. Ser. J. Phys. Conf. Ser. 1083, 012036 (2018). https://doi.org/10.1088/1742-6596/1083/1/012036

    Article  Google Scholar 

  50. A.C. García-Velasco, A. Báez-Rodríguez, M. Bizarro, L. García-González, J. Hernández-Torres, L. Zamora-Peredo, Strong Visible photoluminescence emission of ZnO nanosheets and nanoflowers by a facile hydrothermal route. Nanotechnology 31, 205601 (2020). https://doi.org/10.1088/1361-6528/ab6fde

    Article  ADS  Google Scholar 

  51. S. Jafarirad, M. Mehrabia, B. Divband, M. Kosari-Nasab, Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater. Sci. Eng. C 59, 296–302 (2016). https://doi.org/10.1016/j.msec.2015.09.089

    Article  Google Scholar 

  52. S. Rajeswaran, S.S. Thirugnanasambandan, R.S. Subramaniyan et al., Synthesis of eco-friendly facile nano-sized zinc oxide particles using aqueous extract of Cymodocea serrulata and its potential biological applications. Appl. Phys. A 125, 105 (2019). https://doi.org/10.1007/s00339-019-2404-4

    Article  ADS  Google Scholar 

  53. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kasu, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  54. K. Qi, B. Cheng, Yu. Jiaguo, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  Google Scholar 

Download references

Funding

The author, Dr. K. Venkatachalam is extremely thankful to the financial help for the DST-SERB project for the Department of Science and Technology, India (Ref. No EEQ/2016/000559, Date.: 06.02.2017).

Author information

Authors and Affiliations

Authors

Contributions

PSSS: conceptualization; methodology; formal analysis; investigation; writing original draft preparation; writing—review and editing. GSC: investigation and methodology. DG: data curation. VK: writing-review; funding acquisition; visualization; supervision; project administration.

Corresponding author

Correspondence to Venkatachalam Kandan.

Ethics declarations

Conflict of interest

No conflict of interest in this paper is declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundara Selvam, P.S., Chinnadurai, G.S., Ganesan, D. et al. Eggshell membrane-mediated V2O5/ZnO nanocomposite: synthesis, characterization, antibacterial activity, minimum inhibitory concentration, and its mechanism. Appl. Phys. A 126, 893 (2020). https://doi.org/10.1007/s00339-020-04076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04076-2

Keywords

Navigation