Skip to main content
Log in

Staggered Field in Quantum Antiferromagnetic S = 1/2 Spin Chain Probed by High-Frequency EPR (the Case of Doped CuGeO3)

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The flashback of the investigation of CuGeO3 doped with magnetic impurities carried out by high-frequency EPR brings to light physics still actual for one-dimensional S = 1/2 quantum spin chains and covering a vast area from disorder-driven quantum critical phenomena to a new type of magnetic oscillations. It is shown that a key opening the door for a better understanding of this field of research is the Oshikawa and Affleck (OA) theory and, especially, following from it the universal link between the line width and g factor. The most puzzling problem appears around the staggered field, which contributes to different physical properties and serves as a driving force in the onset of anomalous growth of the line width and g factor at low temperatures. Accent is made on unsolved problems still providing a challenge for the theoretical explanation, including the genesis of the staggered field in doped systems, the contribution of the staggered magnetization to the integrated intensity, and spin susceptibility of a Griffiths phase and its magnetic properties on the nanoscale. A new type of magnetic oscillations, having explanation neither in OA theory nor within the framework of the semi-classical magnetization motion, is described in detail. This experimental finding poses the most difficult case and a touchstone for theory, as long as the corresponding modes of magnetic oscillations may be likely treated as violating Landau–Lifshits equation of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M. Hase, I. Terasaki, K. Uchinokura, M. Tokunaga, N. Miura, H. Obara, Phys. Rev. B 48, 9616 (1993)

    ADS  Google Scholar 

  2. K. Uchinokura, M. Hase, Y. Sasago, Phys. B 211, 175 (1995)

    ADS  Google Scholar 

  3. L.P. Regnault, M. Ain, B. Hennion, G. Dhalenne, A. Revkolevschi, Phys. Rev. B 53, 5579 (1996)

    ADS  Google Scholar 

  4. M. Hase, Y. Sasago, I. Terasaki, K. Uchinokura, G. Kido, T. Hamamoto, J. Phys. Soc. Jpn. 65, 273 (1996)

    ADS  Google Scholar 

  5. H. Nojiri, T. Hamamoto, Z.J. Wang, S. Mitsudo, M. Motokawa, S. Kimura, H. Ohta, A. Ogiwara, O. Fujita, J. Akimitsu, J. Phys. Condens. Matter 9, 1331 (1997)

    ADS  Google Scholar 

  6. M. Mostovoy, D. Khomskii, J. Knoester, Phys. Rev. B 58, 8190 (1998)

    ADS  Google Scholar 

  7. S.V. Demishev, R.V. Bunting, L.I. Leonyuk, E.D. Obraztsova, A.A. Pronin, N.E. Sluchanko, N.A. Samarin, S.V. Terekhov, JETP Lett. 73, 31 (2001)

    ADS  Google Scholar 

  8. S.V. Demishev, Y. Inagaki, M.M. Markina, H. Ohta, S. Okubo, Y. Oshima, A.A. Pronin, N.E. Sluchanko, N.A. Samarin, V.V. Glushkov, Phys. B 329, 715 (2003)

    ADS  Google Scholar 

  9. S.V. Demishev, A.V. Semeno, A.A. Pronin, N.E. Sluchanko, N.A. Samarin, H. Ohta, S. Okubo, M. Kimata, K. Koyama, M. Motokawa, A.V. Kuznetsov, J. Supercond. Novel Magn. 20, 105 (2007)

    Google Scholar 

  10. S.V. Demishev, A.V. Semeno, N.E. Sluchanko, N.A. Samarin, A.A. Pronin, Y. Inagaki, S. Okubo, H. Ohta, Y. Oshima, L.I. Leonyuk, Phys. Solid State 46, 2238 (2004)

    ADS  Google Scholar 

  11. S.V. Demishev, A.V. Semeno, N.E. Sluchanko, N.A. Samarin, I.E. Tarasenko, H. Ohta, S. Okubo, Appl. Magn. Reson. 35, 327 (2008)

    Google Scholar 

  12. R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)

    ADS  Google Scholar 

  13. A.J. Bray, Phys. Rev. Lett. 59, 586 (1987)

    ADS  MathSciNet  Google Scholar 

  14. D.S. Fisher, Phys. Rev. Lett. 69, 534 (1992)

    ADS  Google Scholar 

  15. D.S. Fisher, Phys. Rev. B 50, 3799 (1994)

    ADS  Google Scholar 

  16. D.S. Fisher, Phys. Rev. B 51, 6411 (1995)

    ADS  Google Scholar 

  17. S.V. Demishev, Phys. Solid State 51, 547 (2009)

    ADS  Google Scholar 

  18. S.V. Demishev, Phys. Status Solidi B 247, 676 (2010)

    ADS  Google Scholar 

  19. S.V. Demishev, A.L. Chernobrovkin, V.V. Glushkov, A.V. Grigorieva, E.A. Goodilin, H. Ohta, S. Okubo, M. Fujisawa, T. Sakurai, N.E. Sluchanko, N.A. Samarin, A.V. Semeno, Phys. Rev. B 84, 094426 (2011)

    ADS  Google Scholar 

  20. S.V. Vonsovskii, Magnetism (Wiley, New York, 1979)

    Google Scholar 

  21. H. Reiger, A.P. Young, Phys. Rev. B 54, 3328 (1996)

    ADS  Google Scholar 

  22. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  23. R. Kubo, K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954)

    ADS  Google Scholar 

  24. H. Mori, K. Kawasaki, Prog. Theor. Phys. 27, 529 (1962)

    ADS  Google Scholar 

  25. H. Mori, K. Kawasaki, Prog. Theor. Phys. 28, 971 (1962)

    ADS  Google Scholar 

  26. K. Okuda, H. Hata, M. Date, J. Phys. Soc. Jpn. 33, 1574 (1972)

    ADS  Google Scholar 

  27. M. Oshikawa, I. Affleck, Phys. Rev. Lett. 82, 5136 (1999)

    ADS  Google Scholar 

  28. M. Oshikawa, I. Affleck, Phys. Rev. B 65, 134410 (2002)

    ADS  Google Scholar 

  29. S.V. Demishev, Y. Inagaki, H. Ohta, S. Okubo, Y. Oshima, A.A. Pronin, N.A. Samarin, A.V. Semeno, N.E. Sluchanko, Europhys. Lett. 63, 446 (2003)

    ADS  Google Scholar 

  30. J. Lüdecke, A. Jobst, S. van Smaalen, E. Morre, C. Geibel, H.-G. Krane, Phys. Rev. Lett. 82, 3633 (1999)

    ADS  Google Scholar 

  31. T. Asano, H. Nojiri, Y. Inagaki, J.P. Boucher, T. Sakon, Y. Ajiro, M. Motokawa, Phys. Rev. Lett. 84, 5880 (2000)

    ADS  Google Scholar 

  32. F.H.L. Essler, A.M. Tsvelik, Phys. Rev. B 57, 10592 (1998)

    ADS  Google Scholar 

  33. F.H.L. Essler, Phys. Rev. B 59, 14376 (1999)

    ADS  Google Scholar 

  34. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32, 337 (1972)

    ADS  Google Scholar 

  35. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 38, 1003 (1975)

    ADS  Google Scholar 

  36. S. Demishev, A. Semeno, A. Pronin, N. Sluchanko, N. Samarin, H. Ohta, S. Okubo, M. Kimata, K. Koyama, M. Motokawa, Prog. Theor. Phys. Suppl. 159, 387 (2005)

    ADS  Google Scholar 

  37. S.V. Demishev, A.V. Semeno, A.A. Pronin, N.E. Sluchanko, N.A. Samarin, H. Ohta, S. Okubo, M. Kimata, K. Koyama, M. Motokawa, A.V. Kuznetsov, J. Magn. Magn. Mater. 300, e346 (2006)

    ADS  Google Scholar 

  38. M. Sato, M. Oshikawa, Phys. Rev. B 69, 054406 (2004)

    ADS  Google Scholar 

  39. Y. Ajiro, J. Phys. Soc. Jpn. 72(Suppl. B), 12 (2003)

    ADS  Google Scholar 

  40. H. Ohta, K. Kawakami, Y. Inagaki, S. Okubo, T. Kunimoto, Z. Hiroi, Prog. Theor. Phys. Suppl. 145, 95 (2002)

    ADS  Google Scholar 

  41. H. Ohta, S. Okubo, K. Kawakami, D. Fukuoka, Y. Inagaki, T. Kunimoto, Z. Hiroi, J. Phys. Soc. Jpn. 72(Suppl B), 26 (2003)

    ADS  Google Scholar 

  42. V.N. Glazkov, A.I. Smirnov, O.A. Petrenko, D. McK Paul, A.G. Vetkin, R.M. Eremina, J. Phys. Condens. Matter 10, 7879 (1998)

    ADS  Google Scholar 

  43. A.I. Smirnov, V.N. Glazkov, A.N. Vasilev, L.I. Leonyuk, S.M. Coad, D. McK Paul, G. Dhalenne, A. Revcolevschi, JETP Lett 64, 305 (1996)

    ADS  Google Scholar 

  44. F. Keffer, C. Kittel, Phys. Rev. 85, 329 (1952)

    ADS  Google Scholar 

  45. S.A. Al’tshuler, B.M. Kozyrev, Electron Paramagnetic Resonance (Academic Press, New York, 1964)

    Google Scholar 

  46. I.A. Kvasnikov, Thermodynamics and Statistical Physics. The Theory of Equilibrium Systems. Statistical Physics, vol. 2 (Editorial URSS, Moscow, 2002) ((in Russian))

    Google Scholar 

  47. R. Kubo, H. Ichimura, T. Usui, N. Hashitsume, Statistical Mechanics (North Holland, Amsterdam, 1990)

    Google Scholar 

  48. A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996)

    Google Scholar 

  49. S.V. Demishev, A.V. Semeno, N.E. Sluchanko, N.A. Samarin, A.A. Pronin, V.V. Glushkov, H. Ohta, S. Okubo, M. Kimata, K. Koyama, M. Motokawa, A.V. Kuznetsov, Phys. B 359, 1315 (2005)

    ADS  Google Scholar 

  50. S. Miyashita, T. Yoshino, A. Ogasahara, J. Phys. Soc. Jpn. 68, 655 (1999)

    ADS  Google Scholar 

  51. Y. Natsume, F. Sasagawa, M. Toyoda, I. Yamada, J. Phys. Soc. Jpn. 48, 50 (1980)

    ADS  Google Scholar 

  52. I. Yamada, Y. Natsume, J. Phys. Soc. Jpn. 48, 58 (1980)

    ADS  Google Scholar 

  53. Y. Natsume, F. Noda, F. Sasagawa, H. Kanazawa, J. Phys. Soc. Jpn. 52, 1427 (1983)

    ADS  Google Scholar 

  54. S.V. Demishev, A.V. Semeno, H. Ohta, S. Okubo, I.E. Tarasenko, T.V. Ischenko, N.E. Sluchanko, JETP Lett. 84, 249 (2006)

    Google Scholar 

  55. S.V. Demishev, A.V. Semeno, H. Ohta, S. Okubo, I.E. Tarasenko, T.V. Ishchenko, N.A. Samarin, N.E. Sluchanko, Phys. Solid State 49, 1295 (2007)

    ADS  Google Scholar 

  56. A.V. Semeno, H. Ohta, S. Okubo, N.E. Sluchanko, I.E. Tarasenko, A.V. Kuznetsov, T.V. Ishchenko, S.V. Demishev, Appl. Magn. Reson. 33, 3 (2008)

    Google Scholar 

  57. A.V. Semeno, M.I. Gilmanov, A.V. Kuznetzov, N.N. Melnik, A.V. Grigorjeva, A.V. Barulin, E.A. Gudilin, S.V. Demishev, Appl. Magn. Reson. 47, 881–893 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A.N. Samarin for his help with manuscript preparation. This work was supported by Programme of Russian Academy of Sciences “Photon technologies in probing of inhomogeneous media and biological objects”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Demishev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demishev, S.V., Semeno, A.V. & Ohta, H. Staggered Field in Quantum Antiferromagnetic S = 1/2 Spin Chain Probed by High-Frequency EPR (the Case of Doped CuGeO3). Appl Magn Reson 52, 379–410 (2021). https://doi.org/10.1007/s00723-020-01286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01286-y

Navigation