Skip to main content
Log in

Curing Cycle Optimization for Thick Composite Laminates Using the Multi-Physics Coupling Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A multi-objective optimization method which takes the multi-physics coupling characteristic into account is proposed to determine the cure cycle profile for polymer-matrix composites. First, a numerical model which considers the effects of heat transfer, cure kinetics, resin flow-compaction process has been developed to predict the temperature and degree of curing. The simulation results agree well with the experimental measurements from the previous publication to validate the practicability of the FE model. A surrogate model based on the Surface Response Method is built to make the solution feasible according to the entire calculation time. The surrogate model was integrated into the optimization framework to optimize cure cycle profile using NSGA-II algorithm. The results show that the duration of the cure time and the maximum gradient of temperature are about 44.8% and 34% shorter than in the typical cure profile, respectively. It is also shown that the multi-physics coupling characteristic should be considered in the optimization process for thick composite component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, H., Chen, L., Ye, F., Wang, J.: A multi-hierarchical successive optimization method for reduction of spring-back in autoclave forming. Compos. Struct. 188, 143–158 (2018)

    Article  Google Scholar 

  2. Struzziero, G., Teuwen, J.J.E.: Effect of convection coefficient and thickness on optimal cure cycles for the manufacturing of wind turbine components using VARTM. Compos. A: Appl. Sci. Manuf. 123, 25–36 (2017)

    Article  Google Scholar 

  3. Wang, L., Xu, P., Peng, X., Zhao, K., Wei, R.: Characterization of inter-ply slipping behaviors in hot diaphragm preforming: experiments and modelling. Compos. A: Appl. Sci. Manuf. 121, 28–35 (2017)

    Article  Google Scholar 

  4. Garschke, C., Weimer, C., Parlevliet, P.P., Fox, B.L.: Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Compos. A: Appl. Sci. Manuf. 43, 935–944 (2017)

    Article  Google Scholar 

  5. Ruiz, E., Trochu, F.: Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos. A: Appl. Sci. Manuf. 37, 913–924 (2006)

    Article  Google Scholar 

  6. Sorrentino, L., Esposito, L., Bellini, C.: A new methodology to evaluate the influence of curing overheating on the mechanical properties of thick FRP laminates. Compos. Part B 109, 187–196 (2016)

    Article  Google Scholar 

  7. He, H.W., Li, K.X.: Effect of processing parameters on the interlaminar shear strength of carbon fiber/epoxy composites. J. Macromol. Sci. B. 53, 1050–1058 (2014)

    Article  CAS  Google Scholar 

  8. Hernández, S., Sket, F., González, C., Llorca, J.: Optimization of curing cycle in carbon fiber-reinforced laminates Void distribution and mechanical properties. Compos Sci Technol 85, 85–95 (2013)

    Article  Google Scholar 

  9. XW, Zhang., H, Liu., LP, Tu.: A modified particle swarm optimization for multimodal multi-objective optimization. Eng. Appl. Artif. Intel. 95, 103905 (2020)8

  10. Wang, L., Li, H., Bu, X.: Multi-objective optimization of Binary Flashing Cycle (BFC) driven by geothermal energy. Appl. Therm. Eng. 166, 114693 (2020)

  11. Li, K., Yan, S., Zhong, Y., Pan, W., Zhao, G.: Multi-Objective Optimization of the Fiber-reinforced Composite Injection Molding Process using Taguchi method, RSM, and NSGA-II. Simul. Model. Pract. Th. 91, 69–82 (2019)

    Article  Google Scholar 

  12. Faran, R., Ibrahim, D., Kamiel, G.: A multi-objective optimization of the integrated copper-chlorine cycle for hydrogen production. Comput. Chem. Eng. Th. 140, 106889 (2020)

    Article  Google Scholar 

  13. Optimal curing for thermoset matrix composites: Li, M., C.L. Tucker III. Thermochemical and consolidation considerations. Polym Compos. 23, 118–131 (2002)

    Google Scholar 

  14. Neeraj, R., Ranga, P.: Optimal cure cycles for the fabrication of thermosetting-matrix composites. Polym Compos. 18, 566–581 (1997)

    Article  Google Scholar 

  15. Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. J Heat Trans-T Asme. 125, 127–136 (2003)

    Article  Google Scholar 

  16. Dolkun, D., Zhu, W., Xu, Q., Ke, Y.: Optimization of cure profile for thick composite parts based on finite element analysis and genetic algorithm. J. Compos. Mater. 52, 3885–3894 (2018)

    Article  Google Scholar 

  17. Struzziero, G., Skordos, A.A.: Multi-objective optimisation of the cure of thick components. Compos. A: Appl. Sci. Manuf. 93, 126–136 (2017)

    Article  CAS  Google Scholar 

  18. Carlone, P., Aleksendrić, D., Ćirović, V., Palazzo, G.S.: Meta-modeling of the curing process of thermoset matrix composites by means of a FEM–ANN approach. Compos. Part B 67, 441–448 (2014)

    Article  CAS  Google Scholar 

  19. Vafayan, M., Ghoreishy, M.H.R., Abedini, H., Beheshty, M.H.: Development of an optimized thermal cure cycle for a complex-shape composite part using a coupled finite element/genetic algorithm technique. Iran. Polym. J. 24, 459–469 (2015)

    Article  Google Scholar 

  20. Shah, P.H., Halls, V.A., Zheng, J.Q., Batra, R.C.: Optimal cure cycle parameters for minimizing residual stresses in fiber-reinforced polymer composite laminates. J. Compos. Mater. 52, 773–779 (2017)

    Article  Google Scholar 

  21. Aleksendrić, D., Carlone, P., Ćirović, V.: Optimization of the temperature-time curve for the curing process of thermoset matrix composites. Appl. Compos. Mater. 23, 1047–1063 (2016)

    Article  Google Scholar 

  22. Tifkitsis, K.I., Mesogitis, T.S., Struzziero, G., Skordos, A.A.: Stochastic multi-objective optimisation of the cure process of thick laminates. Compos. A: Appl. Sci. Manuf. 112, 383–394 (2018)

    Article  CAS  Google Scholar 

  23. GutowskI, T.G., Cai, Z., Bauer, S., Boucher, D.: Consolidation experiments for laminate composites. J. Compos. Mater 21, 650–669 (1987)

    Article  CAS  Google Scholar 

  24. Young, W.B.: Compacting pressure and cure cycle for processing of thick composite laminates. Compos. Sci. Technol. 54, 299–306 (1995a)

    Article  CAS  Google Scholar 

  25. Young, W.B.: Resin flow analysis in the consolidation of multi-directional laminated composites. Polym Compos. 16, 250–257 (1995b)

    Article  CAS  Google Scholar 

  26. Li, Y., Li, M., Gu, Y., Zhang, Z.: Numerical and experimental study of the bleeder flow in autoclave process. Appl. Compos. Mater. 18, 327–336 (2011)

    Article  CAS  Google Scholar 

  27. Ganapathi, A.S., Joshi, S.C., Chen, Z.: Simulation of bleeder flow and curing of thick composites with pressure and temperature dependent properties. Simul. Model. Pract. Th. 32, 64–82 (2013)

    Article  Google Scholar 

  28. Bogetti, T.A., Gillespie, J.W.J.: Two-dimensional cure simulation of thick thermosetting composites. J. Compos. Mater. 25, 239–273 (1991)

    Article  CAS  Google Scholar 

  29. White, S.R., Hahn, H.T.: Process modeling of composite materials residual stress development during cure Part II Experimental validation. J Compos Mater 26, 2423–2453 (1992)

    Article  CAS  Google Scholar 

  30. Johnston, A.A.: An integrated model of the development of process-induced deformation in autoclave processing of composite structures (1997)

  31. Shin, D.D., Hahn, H.T.: Compaction of thick composites: simulation and experiment. Polym. Compos. 25, 49–59 (2004)

    Article  CAS  Google Scholar 

  32. Springer, G.S., Tsai, S.W.: Thermal conductivities of unidirectional materials. J. Compos. Mater. 1, 166–173 (1967)

    Article  CAS  Google Scholar 

  33. Rolfes, R., Hammerschmidt, U.: Transverse thermal conductivity of CFRP laminates: A numerical and experimental validation of approximation formulae. Compos. Sci. Technol. 54, 45–54 (1995)

    Article  CAS  Google Scholar 

  34. Lee, W.I., Loos, A.C., Springer, G.S.: Heat of reaction, degree of cure, and viscosity of hercules 3501–6 resin. J. Compos. Mater. 16, 510–520 (1982)

    Article  CAS  Google Scholar 

  35. Dave, R., Kardos, J.L., Duduković, M.P.: A model for resin flow during composite processing: Part 1—general mathematical development. Polym. Compos. 8, 29–38 (1987)

    Article  CAS  Google Scholar 

  36. Dave, R.: A unified approach to modeling resin flow during composite processing. J. Compos. Mater. 24, 22–41 (1990)

    Article  Google Scholar 

  37. Young, W.B.: Compacting pressure and cure cycle for processing of thick composite laminates. Compos. Sci Technol. 54, 299–306 (1995c)

    Article  CAS  Google Scholar 

  38. Antonucci, V., Giordano, M., Inserraimparato, S., Nicolais, L.: Analysis of heat transfer in autoclave technology. Polym Compos. 22, 613–620 (2010)

    Article  Google Scholar 

  39. Matsuzaki, R., Yokoyama, R., Kobara, T., Tachikawa, T.: Multi-objective curing optimization of carbon fiber composite materials using data assimilation and localized heating. Compos. A: Appl. Sci. Manuf. 119, 91–72 (2019)

    Article  Google Scholar 

  40. Esposito, L., Sorrentino, L., Penta, F., Bellini, C.: Effect of curing overheating on interlaminar shear strength and its modelling in thick FRP laminates. Int. J. Adv. Manuf. Tech. 87, 2213–2220 (2016)

    Article  Google Scholar 

  41. Yeong, K.K., Scott, R.W.: Stress relaxation behavior of 35016 epoxy resin during cure. Polym Engng Sci 36, 2852–2862 (1996)

    Article  Google Scholar 

  42. Yan, L., Qu, Y., Guan, G.: Automatic design optimization of SWATH applying CFD and RSM model. Ocean. Eng. 172, 146–154 (2019a)

    Article  Google Scholar 

  43. Yan, L., Qu, Y., Guan, G.: Scantling optimization of FPSO internal turret area structure using RBF model and evolutionary strategy. Ocean. Eng. 191, 106562 (2019b)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports by National Nature Science Foundation of China (51575442, 51805430, 51805429) and Shaanxi Natural Science Foundation (2019JQ-183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyi Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Tong, X., Yang, G. et al. Curing Cycle Optimization for Thick Composite Laminates Using the Multi-Physics Coupling Model. Appl Compos Mater 27, 839–860 (2020). https://doi.org/10.1007/s10443-020-09836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09836-0

Keywords

Navigation