Skip to main content
Log in

The Homotopy Category of Cotorsion Flat Modules

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

This paper aims at studying the homotopy category of cotorsion flat left modules \({{\mathbb {K}}({\mathrm{CotF}}\text {-}R)}\) over a ring R. We prove that if R is right coherent, then the homotopy category \({\mathbb {K}}(\mathrm{dg}\text {-}\mathrm{CotF}\text {-}R)\) of dg-cotorsion complexes of flat R-modules is compactly generated. This uses firstly the existence of cotorsion flat preenvelopes over such rings and, secondly, the existence of a complete cotorsion pair \(({{\mathbb {K}}_{\mathrm{p}}({\mathrm{Flat}}\text {-}R)}, {\mathbb {K}}(\mathrm{dg}\text {-}\mathrm{CotF}\text {-}R))\) in the homotopy category \({{\mathbb {K}}({\mathrm{Flat}}\text {-}R)}\) of complexes of flat R-modules, for arbitrary R. In the setting of quasi coherent sheaves over a Noetherian scheme, this cotorsion pair was discovered in the literature. However, we use a more elementary argument that gives this cotorsion pair for arbitrary R. Next we deal with cotorsion flat resolutions of complexes and define and study the notion of cotorsion flat dimension for complexes of flat R-modules. We also obtain an equivalence \({\mathbb {K}}(\mathrm{dg}\text {-}\mathrm{CotF}\text {-}R)\approx {{\mathbb {K}}({\mathrm{Proj}}\text {-}R)}\) of triangulated categories where \({{\mathbb {K}}({\mathrm{Proj}}\text {-}R)}\) is the homotopy category of projective R-modules. Combined with the aforementioned result, this recovers a result from Neeman, asserting the compact generation of \({{\mathbb {K}}({\mathrm{Proj}}\text {-}R)}\) over right coherent R. Also we get the unbounded derived category \({\mathbb {D}} (R)\) of R as a Verdier quotient of \({\mathbb {K}}(\mathrm{dg}\text {-}\mathrm{CotF}\text {-}R)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldrich, S.T., Enochs, E.E., Garcia Rozas, J.R., Oyonarte, L.: Covers and envelopes in Grothendieck categories: flat covers of complexes with applications. J. Algebra 243(2), 615–630 (2001)

    Article  MathSciNet  Google Scholar 

  2. Asadollahi, J., Bahlekeh, A., Hajizamani, A., Salarian, Sh: On certain homological invariants of groups. J. Algebra 335, 18–35 (2011)

    Article  MathSciNet  Google Scholar 

  3. Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71(2–3), 129–155 (1991)

    Article  MathSciNet  Google Scholar 

  4. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. Asterisque 100, 1–172 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188(883), viii+207 pp (2007)

  6. Bican, L., El Bashir, R., Enochs, E.: All modules have flat covers. Bull. Lond. Math. Soc. 33(4), 385–390 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Univ. Press, Princeton (1956)

    MATH  Google Scholar 

  8. Enochs, E.E., García Rozas, J.R.: Flat covers of complexes. J. Algebra 210(1), 86–102 (1998)

    Article  MathSciNet  Google Scholar 

  9. Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra. Walter de Gruynter, Berlin (2000)

    Book  Google Scholar 

  10. Gillespie, J.: The flat model structure on Ch(R). Trans. Am. Math. Soc. 356(8), 3369–3390 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gillespie, J.: Gorenstein complexes and recollements from cotorsion pairs. Adv. Math. 291, 859–911 (2016)

    Article  MathSciNet  Google Scholar 

  12. Holm, H., Jørgensen, P.: Compactly generated homotopy categories. Homol. Homotopy Appl. 9(1), 257–274 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hosseini, E., Salarian, Sh: A cotorsion theory in the homotopy category of flat quasi-coherent sheaves. Proc. Am. Math. Soc. 141(3), 753–762 (2013)

    Article  MathSciNet  Google Scholar 

  14. Iversen, B.: Cohomology of Sheaves. Universitext. Springer, Berlin (1986)

    Book  Google Scholar 

  15. Jørgensen, P.: The homotopy category of complexes of projective modules. Adv. Math. 193(1), 223–232 (2005)

    Article  MathSciNet  Google Scholar 

  16. Jørgensen, P.: Existence of Gorenstein projective resolutions and Tate cohomology. J. Eur. Soc. 9(1), 59–76 (2007)

    Article  MathSciNet  Google Scholar 

  17. Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128–1162 (2005)

    Article  MathSciNet  Google Scholar 

  18. Krause, H.: Deriving Auslander’s formula. Documenta Math. 20, 669–688 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  20. Murfet, D.: The mock homotopy category of projectives and Grothendieck duality. Ph.D thesis, Australian National University (2007)

  21. Neeman, A.: The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) 25(5), 547–566 (1992)

    Article  MathSciNet  Google Scholar 

  22. Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)

    Article  MathSciNet  Google Scholar 

  23. Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)

    Book  Google Scholar 

  24. Neeman, A.: The homotopy category of flat modules, and Grothendieck duality. Invent. Math. 174, 255–308 (2008)

    Article  MathSciNet  Google Scholar 

  25. Neeman, A.: The homotopy category of injectives. Algebra Number Theory 8(2), 429–456 (2014)

    Article  MathSciNet  Google Scholar 

  26. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification” d\(^,\)un module. Invent. Math. 13, 1–89 (1971)

    Article  MathSciNet  Google Scholar 

  27. Salce, L.: Cotorsion Theories for Abelian Groups. Symposia Mathematica, vol. 23, pp. 11–32. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  28. Spaltenstein, N.: Resolutions of unbounded complexes. Compos. Math. 65, 121–154 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Verdier, J.L.: Catégories dèrivèes. quelques rèsultats état 0. In: SGA \(4\frac{1}{2}\), Lecture Notes in Math., vol. 569, pp. 262–311. Springer, Berlin (1977)

  30. Verdier, J.L.: Des categories derivees des categories abeliennes. Asterisque 239 (1996)

  31. Weible, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  32. Yang, X., Ding, N.: On a question of Gillespie. Forum Math. 27, 3205–3231 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to an anonymous referee for his/her comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Eshraghi.

Additional information

Communicated by Henning Krause.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshraghi, H., Hajizamani, A. The Homotopy Category of Cotorsion Flat Modules. Appl Categor Struct 29, 213–233 (2021). https://doi.org/10.1007/s10485-020-09613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09613-x

Keywords

Mathematics Subject Classification

Navigation