Skip to main content

Advertisement

Log in

Measuring the Internal Stress in Ovine Meniscus During Simulated In Vivo Gait Kinematics: A Novel Method Using Fibre Optic Technology

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Changes in stress transferred across articular joints have been described as a substantial factor in the initiation and progression of joint disease such as post-traumatic osteoarthritis and have thus been of interest to biomechanical researchers. However, to date, stress magnitudes within the menisci have not been successfully measured. In this study, a novel method for measuring stress within the menisci is presented. Small Fibre Bragg Grating (FBG) sensors were inserted inside menisci and used to measure mechanical stress during replicated gait cycles. In-vitro stress measurements within the menisci were preformed for healthy gait and gait following surgical damage to the joints. Together with our capability to reproduce in vivo motions accurately, the improvements in fibre optic technology have allowed for the first direct measurement of mechanical stress in menisci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Atarod, M., J. M. Rosvold, C. B. Frank, and N. G. Shrive. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage. Ann. Biomed. Eng. 42:1121–1132, 2014.

    Article  Google Scholar 

  2. Baratz, M. E., F. H. Fu, and R. Mengato. Meniscal tears: the effect of meniscectomy and of repair on the intraarticular contact areas and stress in the human knee A preliminary report. Am. J. Sports Med. 14:270–275, 1986.

    Article  CAS  Google Scholar 

  3. Bicos, J., B. Carofino, M. Anderson, A. A. Schepsis, J. P. Fulkerson, and A. Mazzocca. Patellofemoral forces after medial patellofemoral ligament reconstruction. J. Knee Surg. 19:317–326, 2006.

    Article  Google Scholar 

  4. Dennison, C. R. S., P. M. Wild, D. R. Wilson, and P. A. Cripton. A minimally invasive in-fibre Bragg grating sensor for intervertebral disc pressure measurements. Meas. Sci. Technol. 19:085201, 2008.

    Article  Google Scholar 

  5. Dennison, C. R. S., P. M. Wild, D. R. Wilson, and M. K. Gilbart. An in-fibre Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21:115803, 2010.

    Article  Google Scholar 

  6. Fairbank, T. J. Knee joint changes after meniscectomy. J. Bone Joint Surg. Br. 30:664–670, 1948.

    Article  Google Scholar 

  7. Fithian, D. C., M. A. Kelly, and V. C. Mow. Material properties and structure-function relationships in the menisci. Clin. Orthop. Relat. Res. 252:19–31, 1990.

    Google Scholar 

  8. Fresvig, T., P. Ludvigsen, H. Steen, and O. Reikerås. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med. Eng. Phys. 30:104–108, 2008.

    Article  CAS  Google Scholar 

  9. Fukubayashi, T., and H. Kurosawa. The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthritic knee joints. Acta Orthop. Scand. 51:871–879, 1980.

    Article  CAS  Google Scholar 

  10. Hecht, J. Understanding Fibre Optics (5th ed.). Upper Saddle River: Pearson/Prentice Hall, 2006.

    Google Scholar 

  11. Henning, C. E., M. A. Lynch, and J. R. Clark. Vascularity for healing of meniscal repairs. Arthroscopy 3:13–18, 1987.

    Article  CAS  Google Scholar 

  12. Heyse, T. J., C. Becher, N. Kron, S. Ostermeier, C. Hurschler, M. D. Schofer, C. O. Tibesku, and S. FuchsWinkelmann. Patellofemoral pressure after TKA in vitro: highly conforming vs. posterior stabilized inlays. Arch. Orthop. Trauma Surg. 130:191–196, 2010.

    Article  Google Scholar 

  13. Jones, R. E., E. C. Smith, and J. S. Reisch. Effects of medial meniscectomy in patients older than forty years. J. Bone Joint Surg. Am. 60:783–786, 1978.

    Article  CAS  Google Scholar 

  14. Kettelkamp, D. B., and A. W. Jacobs. Tibiofemoral contact area: determination and implications. J. Bone Joint Surg. Am. 4:349–356, 1972.

    Article  Google Scholar 

  15. Kronish, I. M., M. Hempsey, L. Falzon, B. Konrad, and K. W. Davidson. Personalized (N-of-1) trials for depression: a systematic review. J. Clin. Psychopharm. 38:218–225, 2018.

    Article  Google Scholar 

  16. Levy, I. M., P. A. Torzilli, and R. F. Warren. The effect of medial meniscectomy on anterior-posterior motion of the knee. J. Bone Joint Surg. Am. 64:883–888, 1982.

    Article  CAS  Google Scholar 

  17. Mirza, R. D., S. Punja, S. Vohra, and G. Guyatt. The history and development of N-of-1 trials. JRSM. 110:330–340, 2017.

    Article  CAS  Google Scholar 

  18. Ng, J. H., X. Zhou, X. Yang, and J. Hao. A simple temperature-insensitive fibre Bragg grating displacement sensor. Opt. Commun. 273:398–401, 2007.

    Article  CAS  Google Scholar 

  19. Ostermeier, S., M. Holst, M. Bohnsack, C. Hurschler, C. Stukenborg-Colsman, and C. J. Wirth. Dynamic measurement of patellofemoral contact pressure following reconstruction of the medial patellofemoral ligament: an in vitro study. Clin. Biomech. 22:327–335, 2007.

    Article  Google Scholar 

  20. Percha, B., E. B. Baskerville, M. Johnson, J. T. Dudley, and N. Zimmerman. Designing robust N-of-1 studies for precision medicine: simulation study and design recommendations. J. Med. Internet Res. 21:e12641, 2019.

    Article  Google Scholar 

  21. Radin, E. L., F. de Lamotte, and P. Maquet. Role of the menisci in the distribution of stress in the knee. Clin. Orthop. Relat. Res. 185:290–294, 1984.

    Google Scholar 

  22. Rajan, G., D. Callaghan, Y. Semenova, M. Mcgrath, E. Coyle, and G. Farrell. A fibre Bragg grating-based all-fibre sensing system for telerobotic cutting applications. Sensors J. 10:1913–1920, 2011.

    Article  Google Scholar 

  23. Renstrom, P., and R. J. Johnson. Anatomy and biomechanics of the menisci. Clin. Sports Med. 9:523–538, 1990.

    Article  CAS  Google Scholar 

  24. Romanyk, D. L., R. Guan, P. W. Major, and C. R. Dennison. Repeatability of strain magnitude and strain rate measurements in the periodontal ligament using fibre Bragg gratings: an ex vivo study in a swine model. J. Biomech. 54:117–122, 2017.

    Article  Google Scholar 

  25. Romanyk, D. L., H. Yu, M. Grotski, S. Seo, O. Addison, and C. R. Dennison. In situ measurement of dental resin-based composite volumetric shrinkage and temperature effects using in-fibre bragg grating methods. J. Mech. Behav. Biomed. 95:89–95, 2019.

    Article  CAS  Google Scholar 

  26. Rosvold, J. M., S. P. Darcy, R. C. Peterson, Y. Achari, D. T. Corr, L. L. Marchuk, C. B. Frank, and N. G. Shrive. Technical issues in using robots to reproduce joint specific gait. J. Biomech. Eng. 133:054501, 2011.

    Article  CAS  Google Scholar 

  27. Schizas, C., S. Stutz, J. Botsis, and D. Coric. Monitoring of non-homogeneous strains in composites with embedded wavelength multiplexed fibre Bragg gratings: a methodological study. Compos. Struct. 94:987–994, 2012.

    Article  Google Scholar 

  28. Seedhom, B. B., and D. J. Hargreaves. Transmission of the load in the knee joint with special reference to the role in the menisci: part II. Experimental results, discussion and conclusion. Eng. Med. 8:220–228, 1979.

    Article  Google Scholar 

  29. Shoemaker, S. C., and K. L. Markolf. The role of the meniscus in the anteriorposterior stability of the loaded anterior cruciate-deficient knee: effects of partial versus total excision. J. Bone Joint Surg. Am. 68:71–79, 1986.

    Article  CAS  Google Scholar 

  30. Shrive, N. G., J. J. O’Connor, and J. W. Goodfellow. Load-bearing in the knee joint. Clin. Orthop. Relat. Res. 131:279–287, 1978.

    Google Scholar 

  31. Silva, J. C. C., A. Ramos, L. Carvalho, R. N. Nogueira, A. Ballu, M. Mesnard, J. L. Pinto, Hypolito Jose Kalinowski, and J. A. Simoes. Fibre Bragg grating sensing and finite element analysis of the biomechanics of the mandible”. Proc. SPIE 5855, 17th International Conference on Optical Fibre Sensors, 2005.

  32. Steinbrück, A., C. Schroeder, M. Woiczinski, A. Fottner, P. E. Müller, and V. Jansson. Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed. Eng. Online. 12:58, 2013.

    Article  Google Scholar 

  33. Urban, F., J. Kadlec, R. Vlach, and R. Kuchta. Design of a pressure sensor based on optical fibre bragg grating lateral deformation. Sensors 10:11212–11225, 2010.

    Article  CAS  Google Scholar 

  34. Vakiel, P., M. Shekarforoush, C. Dennison, M. Scott, C. Frank, D. Hart, and N. G. Shrive. Stress measurements on the articular cartilage surface using fibre optic technology and in vivo gait kinematics. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02516-x.

    Article  PubMed  Google Scholar 

  35. Vakiel, P., M. Shekarforoush, C. Dennison, M. Scott, G. Muench, C. Frank, D. Hart, and N. G. Shrive. Mapping stresses on the tibial plateau cartilage in an ovine model using replicated in vivo gait kinematics. Ann. Biomed. Eng. 2019.

  36. Walker, P. S., and M. J. Erkman. The role of the meniscus in force transmission across the knee. Clin. Orthop. Relat. Res. 109:184–192, 1975.

    Article  Google Scholar 

  37. Wu, J. Z., W. Herzog, and M. Epstein. Effects of inserting a pressensor film into articular joints on the actual contact mechanics. J. Biomech. Eng. 120:655–659, 1998.

    Article  CAS  Google Scholar 

  38. Zhan, Y., S. Xue, Q. Yang, S. Xiang, H. He, and R. Zhu. A novel fibre Bragg grating high temperature sensor. Optik. 119:535–539, 2008.

    Article  Google Scholar 

  39. Zhao, Y., Y. Zhao, and M. Zhao. Novel force sensor based on a couple of fibre Bragg gratings. Measurement 38:30–33, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors have not received any financial support that may be perceived as a conflict of interest. The authors gratefully acknowledge the support of the McCaig Institute for Bone and Joint Health, Dr. Yamini Achari, Ms. Sarah Flynn, Dr. Fakhry Azad, Mr. Patrick Duffy, and the staff at the University of Calgary Veterinary Science Resource Station for their contributions to and their support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paris Vakiel.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakiel, P., Dennison, C.R., Shekarforoush, M. et al. Measuring the Internal Stress in Ovine Meniscus During Simulated In Vivo Gait Kinematics: A Novel Method Using Fibre Optic Technology. Ann Biomed Eng 49, 1199–1208 (2021). https://doi.org/10.1007/s10439-020-02652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02652-4

Keywords

Navigation