Skip to main content
Log in

Identification of Tetraploid Potato Clones with Good Processing Quality among Genotypes with Reduced Zebra Chip Disease Symptomatology

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Zebra chip (ZC) disease caused by the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) and vectored by the potato psyllid (Bactericera cockerelli Šulc.) inflicts significant yield and quality losses in potato. Potato plants infected with Lso produce tubers with an internal brown stripe pattern that is unacceptable to the potato processing industry. Potato varieties tolerant of ZC disease could reduce yield and quality losses caused by the disease, as well as diminish insecticide usage to control potato psyllids. Tetraploid potato clones selected from breeding programs in the US were screened in Texas under both greenhouse and field conditions. Chipping quality in tubers harvested from plants infested with Lso-infected psyllids and those harvested from from non-infested plants were compared, and tuber symptoms associated with ZC disease were evaluated. Clones showing good chipping quality and promising ZC tolerance in the greenhouse and first field trials were independently tested in a second field trial. Clones of the A07781 and TX12484 families consistently showed good processing quality and ZC tolerance over multiple evaluations. These findings indicate that good processing clones with tolerance to ZC disease are available. These clones could be used by potato breeding programs as parents and could also be used to study the genetics of tolerance to ZC disease.

Resumen

La enfermedad de la papa rayada (ZC por sus siglas en inglés), causada por la bacteria “Candidatus liberibacter solanacearum” (Lso) y transmitida por el psílido de la papa (Bactericera cockerelli Šulc.), infringe pérdidas significativas en rendimiento y calidad en papa. Las plantas infectadas con Lso producen tubérculos con un patrón interno de rayas cafés que es inaceptable para la industria del procesamiento de la papa. Las variedades tolerantes a la enfermedad de ZC pudieran reducir las pérdidas en rendimiento y calidad causadas por la enfermedad, así como la disminución del uso de insecticidas para controlar a los psílidos de la papa. Se evaluaron en Texas clones tetraploides de papa seleccionados de programas de mejoramiento en los EUA, bajo condiciones tanto de invernadero como de campo. Se comparó la calidad de fritura en tubérculos cosechados de plantas infestadas con psílidos infectados con Lso con las cosechadas de plantas no infestadas, y se evaluaron los síntomas de tubérculos asociados con la enfermedad de ZC. Los clones que mostraron buena calidad de fritura y con tolerancia prometedora a ZC en el invernadero y en los ´primeros ensayos de campo se probaron de manera independiente en un segundo ensayo de campo. Los clones de las familias A07781 y TX12484 mostraron consistentemente buena calidad de procesamiento y tolerancia a ZC en múltiples evaluaciones. Estos hallazgos indican que están disponibles clones de buen procesamiento con tolerancia a la enfermedad de ZC. Estos clones podrían usarse por programas de mejoramiento de papa como progenitores y pudieran ser utilizados para estudiar la genética de la tolerancia a la enfermedad de ZC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, J.A.D., G.P. Walker, P.A. Alspach, M. Jeram, and P.J. Wright. 2012. Assessment of susceptibility to zebra chip and Bactericera cockerelli of selected potato cultivars under different insecticide regimes in New Zealand. American Journal of Potato Research 90: 58–65.

    Article  Google Scholar 

  • Buchman, J.L., T.W. Fisher, V.G. Sengoda, and J.E. Munyaneza. 2012. Zebra chip progression: From inoculation of potato plants with liberibacter to development of disease symptoms in tubers. American Journal of Potato Research 89: 159–168.

    Article  Google Scholar 

  • Dahan, J., E.J. Wenninger, B. Thompson, S. Eid, N. Olsen, and A.V. Karasev. 2017. Relative abundance of potato psyllid haplotypes in southern Idaho potato fields during 2012 to 2015, and incidence of ‘candidatus liberibacter solanacearum’ causing zebra chip disease. Plant Disease 101: 822–829.

    Article  CAS  Google Scholar 

  • Greenway, G.A., and S. Rondon. 2018. Economic impact of zebra chip in Idaho, Oregon, and Washington. American Journal of Potato Research 95: 362–367.

    Article  Google Scholar 

  • Hawkes, L. 2016. Texas entomologists testing potato psyllids for insecticide resistance. Southwest Farm Press 04/27/2016. https://www.farmprogress.com/vegetables/texas-entomologists-testing-potato-psyllids-insecticide-resistance.

  • Huot, O.B., J.G. Levy, and C. Tamborindeguy. 2018. Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera cockerelli) feeding and pathogen (‘Candidatus Liberibacter solanacearum’) infection. Plant Molecular Biology 97 (1–2): 57–72.

    Article  CAS  Google Scholar 

  • Lévy, J., J. Hancock, A. Ravindran, D. Gross, C. Tamborindeguy, and E. Pierson. 2013. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. Journal of Economic Entomology 106: 1440–1445.

    Article  Google Scholar 

  • Lévy, J.G., D.C. Scheuring, J.W. Koym, D.C. Henne, C. Tamborindeguy, E. Pierson, and J.C. Miller Jr. 2015. Investigations on putative zebra chip tolerant potato selections. American Journal of Potato Research 92: 417–425.

    Article  Google Scholar 

  • Miles, G.P., M.A. Samuel, J. Chen, E.L. Civerolo, and J.E. Munyaneza. 2010. Evidence that cell death is associated with zebra chip disease in potato tubers. American Journal of Potato Research 87: 337–349.

    Article  CAS  Google Scholar 

  • Munyaneza, J.E. 2012. Zebra chip disease of potato: Biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.

    Article  Google Scholar 

  • Munyaneza, J.E. 2015. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry. American Journal of Potato Research 92: 230–235.

    Article  Google Scholar 

  • Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, and C.C. Pearson. 2011. Susceptibility of selected potato varieties to zebra chip potato disease. American Journal of Potato Research 88: 435–440.

    Article  Google Scholar 

  • Navarre, D.A., R. Shakya, J. Holden, and J.M. Crosslin. 2009. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. American Journal of Potato Research 86: 88–95.

    Article  CAS  Google Scholar 

  • Piepho, H., A. Büchse, and K. Emrich. 2003. A hitchhiker’s guide to mixed models for randomized experiments. Journal of Agronomy and Crop Science 189: 310–322.

    Article  Google Scholar 

  • Prager, S.M., B. Vindiola, G.S. Kund, F.J. Byrne, and J.T. Trumble. 2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). Crop Protection 54: 84–91.

    Article  CAS  Google Scholar 

  • Rashed, A., F. Workneh, J. Gray, L. Paetzold, and C.M. Rush. 2011. Relationship between time of infestations, disease development, and tuber yield. In Proc. 11th Annual SCRI zebra chip rep. Session, ed. F. Workneh, A. Rashed, and C.M. Rush, 22–26. Aurora, CO: Fredric printing.

    Google Scholar 

  • Rashed, A., C. Wallis, L. Paetzold, F. Workneh, and C. Rush. 2013. Zebra chip disease and potato biochemistry: Tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 103: 419–426.

    Article  CAS  Google Scholar 

  • Rashed, A., F. Workneh, L. Paetzold, J. Gray, and C. Rush. 2014. Zebra chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Disease 98: 24–31.

    Article  CAS  Google Scholar 

  • Rashed, A., F. Workneh, L. Paetzold, and C.M. Rush. 2015. Emergence of ‘Candidatus Liberibacter solanacearum’ infected seed potato in relation to the time of infection. Plant Disease 99: 274–280.

    Article  Google Scholar 

  • Rashed, A., N. Olsen, C.M. Wallis, L. Paetzold, L. Woodell, M. Rashidi, F. Workneh, and C.M. Rush. 2018. Postharvest development of ‘Candidatus Liberibacter solanacearum’ in late-season infected potato tubers under commercial storage conditions. Plant Disease 102: 561–568.

    Article  Google Scholar 

  • Rashidi, M., R.G. Novy, C.M. Wallis, and A. Rashed. 2017. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. PLoS One 12: e0183283.

    Article  Google Scholar 

  • Rubio-Covarrubias, O., M. Cadena-Hinojosa, J. Munyaneza, S. Prager, and J. Trumble. 2015. Assessing zebra chip resistance of advanced potato clones under field conditions in the Toluca valley, Mexico. Revista Latinoamericana de la Papa 19: 18–28.

    Article  Google Scholar 

  • Rubio-Covarrubias, O.A., M.A. Cadena-Hinojosa, S.M. Prager, C.M. Wallis, and J.T. Trumble. 2017. Characterization of the tolerance against zebra chip disease in tubers of advanced potato lines from Mexico. American Journal of Potato Research 94: 342–356.

    Article  CAS  Google Scholar 

  • Snack Food Association. 1995. Chipping potato handbook. Alexandria, VA: The Snack Food Association.

    Google Scholar 

  • Swisher Grimm, K.D., T. Mustafa, W.R. Cooper, and J.E. Munyaneza. 2018. Role of ‘Candidatus Liberibacter solanacearum’ and Bactericera cockerelli haplotypes in Zebra chip incidence and symptom severity. American Journal of Potato Research 95: 709–719.

    Article  Google Scholar 

  • Szczepaniec, A., M.J. Raupp, R.D. Parker, D. Kerns, and M.D. Eubanks. 2018. Incidence of resistance to neonicotinoid. Crop Protection 116: 188–195.

    Article  Google Scholar 

  • Wallis, C.M., J. Chen, and E.L. Civerolo. 2012. Zebra chip-diseased potato tubers are characterized by increased levels of host phenolics, amino acids, and defense-related proteins. Physiological and Molecular Plant Pathology 78: 66–72.

    Article  CAS  Google Scholar 

  • Wallis, C.M., A. Rashed, L. Paetzold, F. Workneh, and C.M. Rush. 2014. Similarities and differences in physiological responses to ‘Candidatus Liberibacter solanacearum’ infection among different potato cultivars. Phytopathology 104: 126–133.

    Article  CAS  Google Scholar 

  • Wallis, C.M., J.E. Munyaneza, J. Chen, R. Novy, G. Bester, J.L. Buchman, J. Nordgaard, and P. van Hest. 2015. 'Candidatus Liberibacter solanacearum' titers in and infection effects on potato tuber chemistry of promising germplasm exhibiting tolerance to zebra chip disease. Phytopathology 105: 1573–1584.

    Article  CAS  Google Scholar 

  • Workneh, F., L. Paetzold, A. Silva, C. Johnson, A. Rashed, I. Badillo-Vargas, N.C. Gudmestad, and C.M. Rush. 2018. Assessments of temporal variations in haplotypes of “Candidatus Liberibacter solanacearum” and its vector, the potato psyllid, in potato fields and native vegetation. Environmental Entomology 47: 1184–1193.

    Article  CAS  Google Scholar 

  • Workneh, F., J.D. Gray, L. Paetzold, and C.M. Rush. 2019. Impact of vine kill on zebra chip severity and incidence of ‘Candidatus Liberibacter solanacearum’ in potato tubers. American Journal of Potato Research. 96: 487–492.

    Article  CAS  Google Scholar 

  • Yao, J., P. Saenkham, J. Levy, F. Ibanez, C. Noroy, A. Mendoza, O. Huot, D.F. Meyer, and C. Tamborindeguy. 2016. Interactions ‘Candidatus Liberibacter solanacearum' - Bactericera cockerelli: Haplotype effect on vector fitness and gene expression analyses. Frontiers in Cellular and Infection Microbiology 6: 62.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Angel Chappell, Mike Jenson, Julien Levy, Charlie Higgins, Frank Dainello, Li Paetzold, Maher Alsahlany, Azucena Mendoza, Jeewan Pandey, Ao Jiao, Ruth Preslar, Ashley Carter, and Sydnee Coates who contributed on various technical aspects of the project.

This work was supported by Potatoes USA, USDA/NIFA Special Research Grants Program, Texas Department of Agriculture, Texas A&M Merit Fellowship, and Texas A&M Department of Horticulture. Bruce Barrett, Springlake Potatoes, Inc., provided land for field trials near Springlake, TX, and Texas A&M Agrilife Research provided land for field validation at Bushland, TX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Isabel Vales.

Additional information

This paper is dedicated to the memory of Dr. J. Creighton Miller Jr., who passed away on Nov. 3rd, 2019. His legacy will continue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigue, S.J., Scheuring, D.C., Koym, J.W. et al. Identification of Tetraploid Potato Clones with Good Processing Quality among Genotypes with Reduced Zebra Chip Disease Symptomatology. Am. J. Potato Res. 97, 565–579 (2020). https://doi.org/10.1007/s12230-020-09804-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09804-1

Keywords

Navigation