Skip to main content
Log in

The Structure of Computably Enumerable Preorder Relations

  • Published:
Algebra and Logic Aims and scope

We study the structure Ceprs induced by degrees of computably enumerable preorder relations with respect to computable reducibility ≤c. It is proved that the structure of computably enumerable equivalence relations is definable in Ceprs. This fact and results of Andrews, Schweber, and Sorbi imply that the theory of the structure Ceprs is computably isomorphic to first-order arithmetic. It is shown that a Σ1-fragment of the theory is decidable, while its Π3-fragment is hereditarily undecidable. It is stated that any two incomparable degrees in Ceprs do not have a least upper bound, and that among minimal degrees in Ceprs, exactly two are c-degrees of computably enumerable linear preorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. L. Ershov, “Positive equivalences,” Algebra and Logic, 10, No. 6, 378-394 (1971).

    MathSciNet  MATH  Google Scholar 

  2. Yu. L. Ershov, Numeration Theory [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  3. C. Bernardi, “On the relation provable equivalence and on partitions in effectively inseparable sets,” Stud. Log., 40, No. 1, 29-37 (1981).

    MathSciNet  MATH  Google Scholar 

  4. C. Bernardi and A. Sorbi, “Classifying positive equivalence relations,” J. Symb. Log., 48, No. 3, 529-538 (1983).

    MathSciNet  MATH  Google Scholar 

  5. S. Gao and P. Gerdes, “Computably enumerable equivalence relations,” Stud. Log., 67, No. 1, 27-59 (2001).

    MathSciNet  MATH  Google Scholar 

  6. U. Andrews and A. Sorbi, “Joins and meets in the structure of ceers,” Computability, 8, Nos. 3/4, 193-241 (2019).

  7. U. Andrews and A. Sorbi, “Jumps of computably enumerable equivalence relations,” Ann. Pure Appl. Log., 169, No. 3, 243-259 (2018).

    MathSciNet  MATH  Google Scholar 

  8. U. Andrews, N. Schweber, and A. Sorbi, “The theory of ceers computes true arithmetic,” Ann. Pure Appl. Log., 171, No. 8 (2020), Article ID 102811.

  9. U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. S. Mauro, and A. Sorbi, “Universal computably enumerable equivalence relations,” J. Symb. Log., 79, No. 1, 60-88 (2014).

    MathSciNet  MATH  Google Scholar 

  10. U. Andrews, S. Badaev, and A. Sorbi, “A survey on universal computably enumerable equivalence relations,” in Lect. Notes Comput. Sci., 10010, Springer, Cham (2017), pp. 418-451.

  11. S. Badaev and A. Sorbi, “Weakly precomplete computably enumerable equivalence relations,” Math. Log. Q., 62, Nos. 1/2, 111-127 (2016).

  12. J. C. Rosenstein, Linear Orderings, Pure Appl. Math., 98, Academic Press, New York (1982).

  13. N. A. Bazhenov and B. S. Kalmurzaev, “On dark computably enumerable equivalence relations,” Sib. Math. J., 59, No. 1, 22-30 (2018).

    MathSciNet  MATH  Google Scholar 

  14. A. H. Lachlan, “Initial segments of one-one degrees,” Pac. J. Math., 29, No. 2, 351-366 (1969).

    MathSciNet  MATH  Google Scholar 

  15. P. G. Odifreddi, Classical Recursion Theory, Vol. 2, Stud. Log. Found. Math., 143, North-Holland, Amsterdam (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Badaev.

Additional information

Translated from Algebra i Logika, Vol. 59, No. 3, pp. 293-314, May-June, 2020. Russian https://doi.org/10.33048/alglog.2020.59.301.

S. A. Badaev and B. S. Kalmurzaev are supported by SC MES RK, project No. AP05131579.

N. A. Bazhenov supported by Mathematical Center in Akademgorodok, Agreement with RF Ministry of Science and Higher Education No. 075-15-2019-1613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaev, S.A., Bazhenov, N.A. & Kalmurzaev, B.S. The Structure of Computably Enumerable Preorder Relations. Algebra Logic 59, 201–215 (2020). https://doi.org/10.1007/s10469-020-09592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-020-09592-x

Keywords

Navigation