Skip to main content
Log in

Inga edulis Mart. intercropped with pasture improves soil quality without compromising forage yields

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

This study evaluated the effect of Inga edulis trees on soil quality attributes and forage yield and moisture in a pasture field in the county of Carrancas, Minas Gerais, Brazil. Soil samples were collected under the canopy and beyond the canopy projection of five I. edulis trees, at four distances from the tree trunks to beyond the canopy projection, along the radius line. A randomized block design was used, in which five trees represented five blocks and the four distances from the trees corresponded to the treatments. The forage yield and moisture, soil moisture and chemical attributes, density and diversity of arbuscular mycorrhizal fungi (AMF) spores and the presence of nodule-forming nitrogen-fixing bacteria in legumes were evaluated. The statistical analysis was performed using ANOVA and the Scott-Knott test (p = 0.05). No statistical differences between forage yield and moisture were found in the soil under or beyond the canopy projection. The soil quality was elevated, indicated by the improved soil pH, base saturation, sum of bases and effective cation exchange capacity in the samples collected closer to I. edulis. No changes in the density and diversity of AMF spores or in the nodulation and development of inoculated seedlings were observed in soil collected at different distances from the trees. Consequently, I. edulis trees can be intercropped with pasture to increase the soil quality without affecting forage yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham EM, Kyriazopoulos AP, Parissi ZM, Kostopoulou P, Karatassiou M, Anjalanidou K, Katsouta C (2014) Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agrofor Syst 88:287–299. https://doi.org/10.1007/s10457-014-9682-9

    Article  Google Scholar 

  • Almeida JCDC, Rocha NS, Nepomuceno DDD, Araújo RP, da Silva TO, Morenz MJF, de Abreu JBR, de Carvalho CAB, Macedo RDO (2015) Mineral composition of legumes forages cultivated under different levels of shade. Semina: Ciências Agrárias 36:367. https://doi.org/10.5433/1679-0359.2015v36n1p367

    Article  CAS  Google Scholar 

  • Alvarez VH, Fonseca DM (1990) Definição de doses de fósforo para a determinação da capacidade máxima de adsorção de fosfato e para ensaios de casa de vegetação. Revista Brasileira de Ciência do Solo 14:49–55

    Google Scholar 

  • Alvarez VH, Novais RF, Barros NF, Cantarutti RB, Lopes AS (1999) Interpretação dos resultados das análises de solos. In: Ribeiro AC, Guimarães PTG, Alvarez VH (eds) Recomendação para o uso de corretivos e fertilizantes em Minas Gerais, 5rd edn. Viçosa, 359 p

  • Andrade CMS de, Valentim JF, da Carneiro JC (2002) Baginha Trees (Stryphnodendron guianense (Aubl.) Benth.) in cultivated pasture ecosystems in the Western Amazon. Revista Brasileira de Zootecnia 31:574–582. https://doi.org/10.1590/S1516-35982002000300006

    Article  Google Scholar 

  • Apolinário VXO, Dubeux JCB, Lira MA, Ferreira RLC, Mello ACL, Coelho DL, Muir JP, Sampaio EVSB (2016) Decomposition of arboreal legume fractions in a silvopastoral system. Crop Sci 56:1356. https://doi.org/10.2135/cropsci2015.09.0588

    Article  CAS  Google Scholar 

  • Araújo SA do C, Silva TO da, Rocha NS, Ortêncio MO (2017) Growing tropical forage legumes in full sun and silvopastoral systems. Acta Sci Anim Sci 39:27–34. https://doi.org/10.4025/actascianimsci.v39i1.32537

  • Bosi C, Pezzopane JRM, Sentelhas PC, Santos PM, Nicodemo MLF (2014) Productivity and biometric characteristics of signal grass in a silvopastoral system. Pesquisa Agropecuária Brasileira 49:449–456. https://doi.org/10.1590/S0100-204X2014000600006

    Article  Google Scholar 

  • Calil FN, Lima NL, Silva RT, Moraes MDA, Barbosa PVG, Lima PAF, Brandão DC, Silva-Neto CM, Carvalho HCS, Nascimento ARN (2016) Biomass and nutrition stock of grassland and accumulated litter in a silvopastoral system with Cerrado species. Afr J Agric Res 11:3701–3709. https://doi.org/10.5897/AJAR2016.11369

    Article  Google Scholar 

  • Cardoso I, Kuyper T (2006) Mycorrhizas and tropical soil fertility. Agr Ecosyst Environ 116:72–84. https://doi.org/10.1016/j.agee.2006.03.011

    Article  Google Scholar 

  • Carneiro JJ, Cardoso IM, Silva ALMS, Ferrari LT, Pontes LM, Fernandes RBA, Carvalho AF, Fernandes Filho EI (2017) Family farmers state: agroecological transition increases the amount of water. Revista Brasileira de Agroecologia 12:52–58

    Google Scholar 

  • Freitas AF de, de Souza LAG, Cardoso IM, Venturin N (2016) Effect of charcoal-enriched substrate on seedlings of rhizobium-inoculated legume trees. Revista Árvore 40:1049–1058. https://doi.org/10.1590/0100-67622016000600010

    Article  Google Scholar 

  • Deniz M, Schmitt-Filho AL, Farley J, Quadros SF, Hötzel MJ (2019) High biodiversity silvopastoral system as an alternative to improve the thermal environment in dairy farms. Int J Biometeorol 63:83–92. https://doi.org/10.1007/s00484-018-1638-8

    Article  PubMed  Google Scholar 

  • Dias-Filho MB (2014) Diagnósticos das pastagens no Brasil. Belém: Embrapa Amazônia Oriental. Série Documentos. 402. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/986147/diagnostico-das-pastagens-no-brasil

  • Dias PF, Souto SM, de Resende A, Moreira JF, Polidoro JC, Campello EFC, Franco AA (2006) Influência da projeção das copas de espécies de leguminosas arbóreas nas características químicas do solo. Pasturas Trop 28:8–17

    Google Scholar 

  • Duarte EMG, Cardoso IM, Stijnen T, Mendonça MAFC, Coelho MS, Cantarutti RB, Kuyper TW, Villani EMA, Mendonça ES (2013) Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agrofor Syst 87:835–847. https://doi.org/10.1007/s10457-013-9600-6

    Article  Google Scholar 

  • Evangelista CR, Partelli FL, Ferreira EPB, Pires FR (2013) Microbiological attributes of soil in the culture of cane sugar in organic and conventional management. Semina: Ciências Agrárias, 34:1549–1562. http://dx.doi.org/10.5433/1679-0359.2013v34n4p1549

  • Fernandes JM, Garcia FCP, de Amorozo MCM, de SiqueiraMarotta LCCPB, Cardoso IM (2014) Ethnobotany of Leguminosae among agroecological farmers in the Atlantic Forest, Araponga, Minas Gerais, Brazil. Rodriguésia 65:539–554. https://doi.org/10.1590/S2175-78602014000200015

    Article  Google Scholar 

  • Fernandes RA, Ferreira DA, Saggin-Junior OJ, Stürmer SL, Paulino HB, Siqueira JO, Carneiro MAC (2016) Occurrence and species richness of mycorrhizal fungi in soil under different land use. Can J Soil Sci 96:271–280. https://doi.org/10.1139/cjss-2015-0011

    Article  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039–1042

    Article  Google Scholar 

  • Ferreira DA, Carneiro MAC, Saggin Junior OJ (2012) Arbuscular mycorrhizal fungi in an oxisol under managements and uses in Cerrado. Revista Brasileira de Ciência do Solo 36:51–61. https://doi.org/10.1590/S0100-06832012000100006

    Article  Google Scholar 

  • Freitas AF, Passos GR, Furtado SDC, Souza LM, Assis SO, Meier M, Silva BM, Ribeiro S, Bevilacqua PD, Mancio AB, Santos PR, Cardoso IM (2009) Produção animal integrada aos sistemas agroflorestais: necessidades e desafios. Revista Agriculturas 6:30–35

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CAB International, Wallingford Oxon

    Book  Google Scholar 

  • Lana ÂMQ, Lana RMQ, Lemes EM, Reis GL, Moreira GHFA (2018) Influence of native or exotic trees on soil fertility in decades of silvopastoral system in the Brazilian savannah biome. Agrofor Syst. https://doi.org/10.1007/s10457-016-9998-8

    Article  Google Scholar 

  • Leblanc HA, McGraw RL, Nygren P, Roux CL (2005) Neotropical Legume Tree Inga edulis Forms N2-fixing Symbiosis with Fast-growing Bradyrhizobium Strains. Plant Soil 275:123–133. https://doi.org/10.1007/s11104-005-0808-8

    Article  CAS  Google Scholar 

  • Lenzi A (2012) Fundamentals of rational grazing Voisin Revista Brasileira de Agroecologia. 7(1): 82–94

  • Lima LPZ, Louzada J, Scolforo JRS (2011) Vulnerability analysis for implementation of conservation units in the Serra de Carrancas microregion, MG. Cerne 17:151–159

    Article  Google Scholar 

  • Martínez J, Cajas YS, León JD, Osorio NW (2014) Silvopastoral systems enhance soil quality in grasslands of Colombia. Appl Environ Soil Sci 1:1–8. https://doi.org/10.1155/2014/359736

    Article  Google Scholar 

  • McLean EO, Heddleson MR, Barlett RJ, Holowaychuk N (1958) Aluminum in soils: I. extraction methods and magnitudes in clays and ohio soils. Soil Sci Soc Am J 22:382–387

    Article  CAS  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na and NH4. Soil Testing Division, Raleigh, North Carolina

    Google Scholar 

  • Myers N, Mittermeier RA, Gustavo AB, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conseration priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Moreira FMS, Gillis M, Pot B, Kerstes K, Franco AA (1993) Characterization of rhizobia isolated from different divergence groups of tropical leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst Appl Microbiol 16:135–146. https://doi.org/10.1016/S0723-2020(11)80258-4

    Article  Google Scholar 

  • Neto RM (2012) The quartzitics landscapes of planalto do alto Rio Grande: relationships between rock-relief-soil-vegetation in the Serra de Carrancas (MG). Caminhos de Geografia 13:263–281

    Google Scholar 

  • Oliveira ME, Leite LL, Franco AC (2005) Efeito de duas espécies nativas de árvores sobre as propriedades do solo e forragem de Brachiaria decumbens Stapf. Pasturas Tropicales 27:51–56

    Google Scholar 

  • Pezzoni T, Vitorino ACT, Daniel O, Lempp B (2012) Influence of Pterodon emarginatus Vogel on physical and chemical attributes of the ground and nutritional value of Brachiaria decumbens Stapf in silvopastoral system. Cerne 18:293–301

    Article  Google Scholar 

  • Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agr Ecosyst Environ 188:198–203. https://doi.org/10.1016/j.agee.2014.02.024

    Article  Google Scholar 

  • Sá OAAL, Ribeiro PRA, Rufini M, Cruvinela IAF, Casagrande DR, Moreira FMS (2019) Microsymbionts of forage peanut under different soil and climate conditions belong to a specific group of Bradyrhizobium strains. Appl Soil Ecol 143:201–212. https://doi.org/10.1016/j.apsoil.2019.07.018

    Article  Google Scholar 

  • Schenck NC, Perez Y (1988) Manual for identification of vesicular-arbuscular mycorrhizal fungi. University of Florida, Gainesville

    Google Scholar 

  • Shoemaker HE, McLean EO, Pratt PF (1961) Buffer methods for determining lime requirement of soils with appreciable amounts of extractable aluminum. Soil Sci Soc Am J 25:274–277

    Article  CAS  Google Scholar 

  • Silva KB (2013) Características químicas, físicas e biológicas de solos sob Sesbania virgata (Cav.) Pers. [Chemical, physical and biological soil properties under Sesbania virgata (Cav.) Pers.] 125 p, Dissertation, Federal University of Lavras, Brazil. http://repositorio.ufla.br/jspui/bitstream/1/690/1/DISSERTA%C3%87%C3%83O_Caracter%C3%ADsticas%20qu%C3%ADmicas%2C%20f%C3%ADsicas%20e%20biol%C3%B3gicas%20de%20solos%20sob%20Sesbania%20virgata%20%28Cav.%29%20Pers.pdf

  • Silva LLGG, Resende AS, Dias PF, Souto SM, Miranda CHB, Franco AA (2008) Brachiaria brizantha cv. marandu em sistemas silvipastoris. EMBRAPA Agrobiologia [Brasilian Company of Livestock and Agricultural Research] Research and Tecnical Bulletin, 28 p, ISSN 1676-6709, Seropédica, Rio de Janeiro, Brazil. https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/36212/1/bot033.pdf

  • Siqueira O, Colozzi-Filho A (1989) Occurrence of vesicular-arbuscular mycorrhizae in agro and natural ecosystems of Minas Gerais state. Pesquisa Agropecuaria Brasileira 8:1499–1506

    Google Scholar 

  • Siqueira J, Saggin-Júnior O (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255. https://doi.org/10.1007/s005720100129

    Article  CAS  Google Scholar 

  • Soares AB, Sartor LR, Adami PF, Varella AC, Fonseca L, Mezzalira JC (2009) Influence of luminosity on the behavior of eleven perennial summer forage species. Revista Brasileira de Zootecnia 38:443–451. https://doi.org/10.1590/S1516-35982009000300007

    Article  Google Scholar 

  • Souza NM (2013) Seleção de estirpes de rizóbios para leguminosas de múltiplo uso em duas classes de solos ácidos da Amazônia Central. Dissertation, Instituto Nacional de Pesquisas da Amazônia

  • Sousa LF, Maurício RM, Moreira GR, Gonçalves LC, Borges I, Pereira LGR (2010) Nutritional evaluation of “Braquiarão” grass in association with “Aroeira” trees in a silvopastoral system. Agrofor Syst 79:189–199. https://doi.org/10.1007/s10457-010-9297-8

    Article  Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Bonfim VR, Santos AC, Carvalho AF, Mendonça ES (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80:1–16. https://doi.org/10.1007/s10457-010-9340-9

    Article  Google Scholar 

  • Thomas RJ (1992) The role of the legume in the nitrogen cycle of productive and sustainable pastures. Grass Forage Sci 47:133–142. https://doi.org/10.1111/j.1365-2494.1992.tb02256.x

    Article  CAS  Google Scholar 

  • Vallejo VE, Arbeli Z, Terán W, Lorenz N, Dick RP, Roldan F (2012) Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agr Ecosyst Environ 150:139–148. https://doi.org/10.1016/j.agee.2012.01.022

    Article  CAS  Google Scholar 

  • Xavier DF, Silva LFJ, Paciullo DSC, Pires MF, Boddey RM (2014) Nitrogen cycling in a Brachiaria-based silvopastoral system in the Atlantic forest region of Minas Gerais, Brazil. Nutr Cycl Agroecosyst 99:45–62. https://doi.org/10.1007/s10705-014-9617-x

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the farmer families of the Union of Rural Producers of Carrancas, the Group Puris, DSc. Fernanda Carvalho, the Postgraduate Program in Forestry Engineering, the UFLA Soil Science Department, the Department of Soils of the Federal University of Viçosa, the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Research Foundation of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Junqueira Carneiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, A.F., Junqueira Carneiro, J., Venturin, N. et al. Inga edulis Mart. intercropped with pasture improves soil quality without compromising forage yields. Agroforest Syst 94, 2355–2366 (2020). https://doi.org/10.1007/s10457-020-00555-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-020-00555-w

Keywords

Navigation