Skip to main content

Advertisement

Log in

Influence of soil characteristics on physiological and growth responses of Cytharexyllum myrianthum Cham. (Verbenaceae) to flooding

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The success of watershed riparian forest restoration programs can be affected by the selection of plant species tolerant to flooding and soil types that occur along water courses. We evaluated physiological and growth responses of Cytharexyllum myrianthum seedlings to flooding in three different soil types representative of the Almada River Watershed (ARW), southern Bahia, Brazil. The soils selected, based on the relative abundance and importance in the ARW, were: Luvisol, Argisol, and Spodosol. After 35 days of flooding, the Argisol had the lowest and the Spodosol had the highest reduction–oxidation (redox) potential (Eh). After 35 days of flooding, the Luvisol had higher pH and electrical conductivity (Ec) than the other soils. Stomatal conductance (gs) and net photosynthesis (A) significantly declined in all soil types after 7 days of flooding. After that period, morphological changes characteristic of flood-tolerant plants, such as lenticel hypertrophy and adventitious root formation, were observed in all flooded plants. Following the morphological changes, gs and A in flooded plants increased to values close to those of the non-flooded plants. The highest relative growth rates based on mass (RGRm) and net assimilation rates (NAR) for the non-flooded plants were observed in the Argisol. After 35 days of flooding, no significant differences in RGRm or NAR were observed between non-flooded and flooded plants in the Luvisol, but large significant decreases in RGRm and NAR were observed for the flooded plants in the Spodosol. Our results demonstrated that the ability of seedlings of the same species to acclimate to flooded soil conditions differs among soil types. Therefore, the characteristics of soils present in a watershed should be considered when selecting tree species for the reforestation of riparian forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaoui-Sossé B, Gérard B, Binet P, Toussaint ML, Badot PM (2005) Influence of flooding on growth, nitrogen availability in soil, and nitrate reduction of young oak seedlings (Quercus robur L.). Ann For Sci 62:593–600

    Google Scholar 

  • Amaral WAN, Antiqueira LMOR, Horbach MA (2013) Frutification and germination ecology of Citharexylum myrianthum Cham (Verbenaceae). J Biotec Biodivers 4:207–215

    Google Scholar 

  • Andrade ACS, Ramos FN, Souza AF, Loureiro MB, Bastos R (1999) Flooding effects in seedlings of Cytharexyllum myrianthum Cham. and Genipa americana L.: responses of two neotropical lowland tree species. Rev Bras Bot 22:281–285

    Google Scholar 

  • Bidala A, Okram Z, Hanief M, Rao KS (2018) Assessment of tolerances in Mitragyna parvifolia (Roxb.) Korth. and Syzygium cumini Keels. seedlings to waterlogging. Photosynthetica 56:707–717

    Google Scholar 

  • Bueno OL, Leonhardt C (2011) Distribuição e potencial paisagístico dos gêneros Citharexylum L. e Verbenoxylum Tronc. no Rio Grande do Sul. Brasil Iheringia Ser Bot 66:47–60

    Google Scholar 

  • Camargo FADO, Santos GDA, Zonta E (1999) Alterações eletroquímicas em solos inundados. Cienc Rural 29:171–180

    Google Scholar 

  • Dilley AC (1968) On the computer calculation of vapor pressure and specific humidity gradients from psychrometric data. J Appl Meteorol 7:717–719

    Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann Rev Plant Physiol Plant Mol Biol 48:223–250

    CAS  Google Scholar 

  • Duarte CI, Martinazzo EG, Bacarin MA, Colares IG (2020) Seed germination, growth and chlorophyll a fluorescence in young plants of Allophylus edulis in different periods of flooding. Acta Physiol Plant 42:80

    CAS  Google Scholar 

  • Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci 24:593–606

    Google Scholar 

  • Embrapa, (1995) Procedimentos normativos de levantamentos pedológicos. Embrapa, Brasília

    Google Scholar 

  • Embrapa Centro Nacional de Pesquisa de Solos (2006) Sistema brasileiro de classificação de solos, 2nd edn. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Faria HH, Sério FC, Garrido MAO (2001) Reposição da vegetação ciliar integrada à conservação de microbacia. IF Sér Reg 21:1–13

    Google Scholar 

  • Franco GB, Souza CMP, Marques EAG, Gomes RL, Chagas CS (2011) Diagnóstico ambiental da Bacia Hidrográfica do Rio Almada (BA). Rev Geogr 20:71–94

    Google Scholar 

  • Gomes ARS, Kozlowski TT (1980) Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol 66:267–271

    CAS  Google Scholar 

  • Gomes RL, Valaddares JO, Moraes MEB, Franco GB, Marques EAG (2013) Panorama do uso e ocupação do solo presente nas áreas de preservação permanente da bacia hidrográfica do rio Almada-BA. Rev Geogr 30:98–115

    Google Scholar 

  • Hunt T (2017) Growth analysis, individual plants. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, 2nd edn, vol 1, plant physiology and development, Academic Press, Oxford, pp 421–429

  • Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417

    CAS  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    CAS  Google Scholar 

  • Jacomine PKT (2000) Solos sob matas ciliares. In: Rodrigues RR, Leitão Filho H (eds) Matas Ciliares: Conservação e Recuperação. Edusp, São Paulo, pp 27–31

    Google Scholar 

  • Junglos FS, Junglos MS, Dresch DM, Santiago BLF, Mussury RM, Scalon SPQ (2018) Morphophysiological responses of Ormosia arborea (Fabaceae) seedlings under flooding and post-flooding conditions. Aust J Bot 66:489–499

    Google Scholar 

  • Kotchetkoff-Henriques O, Joly CA, Bernacci LC (2005) Relação entre o solo e a composição florística de remanescentes de vegetação natural no Município de Ribeirão Preto, SP. Rev Bras Bot 28:541–562

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

    Google Scholar 

  • Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22:550–561

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Google Scholar 

  • Larson KD, Schaffer B, Davies FS (1993) Floodwater oxygen content, lenticel hypertrophy, and ethylene evolution from mango trees. J Exp Bot 44:665–671

    CAS  Google Scholar 

  • Li M, López R, Venturas M, Pita P, Guillermo G, Gordaliza LG, Rodríguez-Calcerrada J (2015) Greater resistance to flooding of seedlings of Ulmus laevis than Ulmus minor is related to the maintenance of a more positive carbon balance. Trees 29:835–848

    Google Scholar 

  • Lima PAF, Gatto A, Albuquerque LB, Malaquias JV, Aquino FG (2016) Crescimento de mudas de espécies nativas na restauração ecológica de matas ripárias. Neotrop Biol Cons 11:72–79

    Google Scholar 

  • Lobo PC, Joly CA (2000) Aspectos ecofisiológicos da vegetação de mata ciliar do sudeste do Brasil. In: Rodrigues RR, Leitão Filho H (eds) Matas Ciliares: Conservação e Recuperação. Edusp, São Paulo, pp 143–157

    Google Scholar 

  • Lopes OF, Rocha FA, de Sousa LF, da Silva DML, Amorim AF, Gomes RL, da Silva Junior ALS, de Jesus RM (2019) Influence of land use on trophic state indexes in northeast Brazilian river basins. Environ Monit Assess 191:77

    Google Scholar 

  • Lorenzi H (2002) Árvores Brasileira: manual de identificação e cultivo de plantas arbóreas do Brasil, Volume 1, 4a edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Mielke MS, Schaffer B (2010) Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ Exp Bot 68:113–121

    CAS  Google Scholar 

  • Mielke MS, Almeida AAF, Gomes FP, Aguilar AG, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    CAS  Google Scholar 

  • Mielke MS, Almeida AAF, Gomes FP, Mangabeira PAO, Silva DC (2005) Effects of soil flooding on leaf gas exchange and growth of two neotropical pioneer tree species. New For 29:161–168

    Google Scholar 

  • Nuñez-Elisea R, Schaffer B, Fisher J, Colls AM, Crane JH (2000) Influence of flooding on net CO2 assimilation, growth, and stem anatomy of Annona species. Ann Bot 84:771–780

    Google Scholar 

  • Paquette A, Hawryshyn J, Senykas AV, Potvin C (2009) Enrichment planting in secondary forests: a promising clean development mechanism to increase terrestrial carbon sinks. Ecol Soc 14:31

    Google Scholar 

  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312

    Google Scholar 

  • Pezeshki SR, DeLaune RD (1998) Responses of seedlings of selected woody species to soil oxidation-reduction conditions. Environ Exp Bot 40:123–133

    Google Scholar 

  • Pezeshki SR, DeLaune RD (2012) Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology 1:196–221

    CAS  Google Scholar 

  • Pires HRA, Franco AC, Piedade MTF, Scudeller VV, Kruijt B, Ferreira CS (2018) Flood tolerance in two tree species that inhabit both the Amazonian floodplain and the dry Cerrado savanna of Brazil. AoB Plants 10:ply05

    Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    CAS  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press Inc, New York, pp 9–45

  • R Core Team (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 10 May 2020

  • Rodrigues RR, Gandolfi S (2000) Conceitos, tendências e ações para a recuperação de florestas ciliares. In: Rodrigues RR, Leitão Filho H (eds) Matas Ciliares: Conservação e Recuperação. Edusp, São Paulo, pp 235–247

    Google Scholar 

  • Ronquim CC (2010) Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. Embrapa Monitoramento por Satélite, Campinas

  • Rossi M, Mattos IFA, Coelho RM, Menk JRF, Rocha FT, Pfeifer RM, DeMaria IC (2005) Relação solos/vegetação em área natural no Parque Estadual de Porto Ferreira, São Paulo. Rev Inst Flor 17:45–61

    Google Scholar 

  • Santana LM, Moraes MEB, Silva DML, Ferragut C (2016) Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Braz J Biol 76:600–610

    CAS  Google Scholar 

  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ (2018) Signal dynamics and interactions during flooding stress. Plant Physiol 176:1106–1117

    CAS  Google Scholar 

  • Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137

    CAS  Google Scholar 

  • Silva PSD, Leal IR, Wirth R, Melo FPL (2012) Leaf-cutting ants alter seedling assemblages across second-growth stands of Brazilian Atlantic Forest. J Trop Ecol 28:361–368

    Google Scholar 

  • Tabarelli M, Pinto LP, Silva JMC, Hirota MM, Bedê LC (2005) Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1:132–138

    Google Scholar 

  • Thode V, França F (2015) Cytharexyllum in: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/jabot/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB15136. Accessed 20 Nov 2016

  • Tokarz E, Urban D (2015) Soil redox potential and its impact on microorganisms and plants of wetlands. Ecol Eng 16:20–30

    Google Scholar 

  • Tuomisto H, Ruokolainen K (1993) Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian Rain Forest. J Veg Sci 5:25–34

    Google Scholar 

  • Uieda W, Paleari LM (2004) Flora e fauna: um dossiê ambiental. Editora Unesp, São Paulo

    Google Scholar 

  • Viana WRCC, Moraes MEB (2016) Bacia do rio Almada (Bahia): criação de cenários ambientais a partir do diagnóstico da fragmentação florestal. In: Moraes MEB, Lorandi R (Orgs) Métodos e técnicas de pesquisa em bacias hidrográficas, Editus, pp. 35–56, Available from SciELO Books https://books.scielo.org. Accessed 24 Mar 2020

  • Voesenek LACJ, Pierik R, Sasidharan R (2015) Plant life without ethylene. Trends Plant Sci 20:783–786

    CAS  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. F Crop Res 152:8–16

    Google Scholar 

  • Yeong KL, Reynolds G, Hill JK (2016) Enrichment planting to improve habitat quality and conservation value of tropical rainforest fragments. Biodivers Conserv 25:957–973

    Google Scholar 

  • Zhai F-F, Li H-D, Zhang S-W, Li Z-J, Liu J-X, Qian Y-Q, Ju G-S, Zhang Y-X, Liu L, Han L, Sun Z-Y (2020) Male and female plants of Salix viminalis perform similarly to flooding in morphology, anatomy, and physiology. Forests 11:321

    Google Scholar 

Download references

Acknowledgements

This research was co-supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (561933/2010-3) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors acknowledge the NGO Instituto Floresta Viva for providing the plant material used in this study. Funds for Laize Q. Alves, Karine F. Pereira and Adrielle Leal during this study were provided by scholarships from Fundação de Amparo a Pesquisa do Estado da Bahia (FAPESB) and CNPq. Marcelo S. Mielke gratefully acknowledges CNPq for the fellowship award for scientific productivity (305477/2018-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Schramm Mielke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Esposito.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz-Alves, L., Pereira, K.F., Leal, A. et al. Influence of soil characteristics on physiological and growth responses of Cytharexyllum myrianthum Cham. (Verbenaceae) to flooding. Acta Physiol Plant 42, 165 (2020). https://doi.org/10.1007/s11738-020-03151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03151-8

Keywords

Navigation