Skip to main content
Log in

Identification, characterisation and expression analysis of MADS-box genes in sweetpotato wild relative Ipomoea trifida

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

MADS-box transcription factors (TFs) participate in various biological processes, including stress response, plant growth and development. The storage root of sweetpotato (Ipomoea batatas) is an important staple food crop in Asian and African areas, and leafy sweetpotato is a popular and healthy vegetable in China. However, the function of the MADS genes remains largely unknown in sweetpotato and the other Ipomoea species. In this study, we carried out a genome-wide gene family analysis of MADS in Ipomoea trifida which is currently considered as the most potential ancestor of sweetpotato. A total of 37 ItfMADS genes that encode 42 proteins were identified. The evolutionary relationship was analysed for MADS proteins in 37 species. According to the tree topology of phylogeny, the ItfMADS genes are classified into Mα, Mβ, Mγ, MIKCC and MIKC* groups. Gene structure analysis revealed that the majority of ItfMADS in the same clade displayed similar exon–intron distribution. Furthermore, the expression patterns of ItfMADS genes were investigated through RNA-seq data and confirmed by qRT-PCR. The expression of ItfMADS genes varied among different tissues, and induced or repressed under different abiotic stresses, thereby suggesting their potential functions under abiotic stresses. Our findings lay a solid foundation for further elucidating the ItfMADS function and promoting sweetpotato molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8(1):242

    Google Scholar 

  • Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3(8):749–758

    CAS  Google Scholar 

  • Causier B, Kieffer M, Davies B (2002) MADS-box genes reach maturity. Science 296(5566):275–276

    CAS  Google Scholar 

  • Chen Y, Zhu P, Wu S, Lu Y, Sun J, Cao Q, Li Z, Xu T (2019) Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida. BMC Genom 20(1):911

    CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37

    CAS  Google Scholar 

  • de Folter S, Busscher J, Colombo L, Losa A, Angenent GC (2004) Transcript profiling of transcription factor genes during silique development in Arabidopsis. Plant Mol Biol 56(3):351–366

    Google Scholar 

  • Dong T, Song W, Tan C, Zhou Z, Yu J, Han R, Zhu M, Li Z (2018) Molecular characterization of nine sweet potato (Ipomoea batatas Lam.) MADS-box transcription factors during storage root development and following abiotic stress. Plant Breed 137(5):790–804

    CAS  Google Scholar 

  • Fan CM, Wang X, Wang YW, Hu RB, Zhang XM, Chen JX, Fu YF (2013) Genome-wide expression analysis of soybean mads genes showing potential function in the seed development. PLoS ONE 8(4):e62288

    CAS  Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438

    CAS  Google Scholar 

  • Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H (2018) Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigenStSP6A. BMC Genom 19(1):726

    Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Hereditas 29(8):1023–1026

    CAS  Google Scholar 

  • Guo X, Chen G, Cui B, Gao Q, Hu Z (2016) Solanum lycopersicum agamous-like mads-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance. Mol Breed 36(9):125

    Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21(6):4327–4337

    CAS  Google Scholar 

  • Hu L, Liu S (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55(3):245–256

    CAS  Google Scholar 

  • Huang JC, Sun M (2000) Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. TheorAppl Genet 100(7):1050–1060

    CAS  Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD et al (2015) OsMADs26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169(4):2935–2949

    CAS  Google Scholar 

  • Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20(12):1963–1977

    CAS  Google Scholar 

  • Ku AT, Huang YS, Wang Y-S, Ma D, Yeh K-W (2008) IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). Ann Bot 102(1):57–67

    CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    CAS  Google Scholar 

  • Li Y, Zhang L, Zhu P, Cao Q, Sun J, Li Z, Xu T (2019) Genome-wide identification, characterisation and functional evaluation of WRKY genes in the sweet potato wild ancestor Ipomoea trifida (HBK) G. Don. under abiotic stresses. BMC Genet 20(1):90

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCt method. Methods 25(4):402–408

    CAS  Google Scholar 

  • Lozano R, Angosto T, Gomez P, Payan C, Capel J, Huijser P, Huijser P, Salinas J, Maetinez-Zapater J-M (1998) Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes. Plant Physiol 117(1):91–100

    CAS  Google Scholar 

  • Lu Y, Sun J, Yang Z, Zhao C, Zhu M, Ma D, Dong T, Zhou Z, Liu M, Yang D, Li Z, Xu T (2019) Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene 686:177–186

    CAS  Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23(3):865–872

    CAS  Google Scholar 

  • Meng X, Liu Y, Dong T, Xu T, Ma D, Pan S, Li Z, Zhu M (2020) Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis. Front Plant Sci 11:572540

    Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316(1):1–21

    CAS  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13(4):935–942

    CAS  Google Scholar 

  • Munoz-Rodriguez P, Carruthers T, Wood JRI, Williams BRM, Weitemier K, Kronmiller B et al (2018) Reconciling conflicting phylogenies in the origin of sweet potato and dispersal to Polynesia. Curr Biol 28(8):1246–1256

    CAS  Google Scholar 

  • Pařenicova L, Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-Box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203

    CAS  Google Scholar 

  • Puig J, Meynard D, Khong GN, Pauluzzi G, Guiderdoni E, Gantet P (2013) Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr Patterns 13(5–6):160–170

    CAS  Google Scholar 

  • Rajapakse S, Nilmalgoda SD, Molnar M et al (2004) Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear beta-amylase gene sequences. MolPhylogenetEvol 30(3):623–632

    CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378(10):1079–1101

    CAS  Google Scholar 

  • Roullier C, Anne D, Wennekes P, Benoit L, Víctor MFB, Rossel G et al (2013) Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L) lam). PLoS ONE 8:e62707

    CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, CurrierT TM, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  Google Scholar 

  • Shirzadi R, Andersen ED, Bjerkan KN, Gloeckle BM, Heese M, Ungru A, Winge P, Koncz C, Aalen RB, Schnittger A, Grini PE (2011) Genome-wide transcript profiling of endosperm without paternal contribution identifies parent-of-origin-dependent regulation of AGAMOUS-LIKE36. PLoS Genet 7(2):e1001303

    CAS  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229(1):1–13

    CAS  Google Scholar 

  • Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40(6):3901–3911

    CAS  Google Scholar 

  • Tang C, Han R, Zhou Z, Yang Y, Zhu M, Xu T, Wang A, Li Z, Dong T (2020) Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing. J Plant Physiol 251:153224

    CAS  Google Scholar 

  • Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberté JF (2007) Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63(5):703–718

    CAS  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J MolEvol 43(5):484–516

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A (2010) The genome of the domesticated apple (Malus x domesticaBorkh). Nat Genet 42(10):833–839

    CAS  Google Scholar 

  • Wan R, Liu R, Yang Z, Zhu P, Cao Q, Xu T (2020) Genome-wide identification, characterisation and expression profile analysis of DEAD-box family genes in sweet potato wild ancestor Ipomoea trifida under abiotic stresses. Genes Genom 42(3):325–335

    CAS  Google Scholar 

  • Wei B, Zhang RZ, Guo JJ, Liu D-M, Li AL, Fan RC, Mao L, Zhang XQ (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS ONE 9(1):e84781

    Google Scholar 

  • Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9(1):4580

    Google Scholar 

  • Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J (2014) Genome-wide identification, characterization and expression analysis of the MADS- box gene family in Prunus mume. Mol Genet Genom 289(5):903–920

    CAS  Google Scholar 

  • Yang Z, Sun J, Chen Y, Zhu P, Zhang L, Wu S, Ma D, Cao Q, Li Z, Xu T (2019) Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genet 20(1):41

    Google Scholar 

  • Yang Z, Zhu P, Liu L, Kang H, Cao Q, Sun J, Dong T, Zhu M, Li Z, Xu T (2020) High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genom 21(1):164

    CAS  Google Scholar 

  • Yin W, Hu Z, Hu J, Zhu Z, Yu X, Cui B et al (2017) Tomato (solanum lycopersicum) mads-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes. Plant Growth Regul 83(1):55–68

    CAS  Google Scholar 

  • Yu LX, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131(2):568–582

    CAS  Google Scholar 

  • Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99(25):16336–16341

    CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS-box gene that controls nutrient-induced changes in root architecture. Science 279(5349):407–409

    CAS  Google Scholar 

  • Zhang Z, Li H, Zhang D, Liu Y, Fu J, Shi Y et al (2012) Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). J Plant Physiol 169(8):797–806

    CAS  Google Scholar 

  • Zhao Y, Li X, Chen W, Peng X, Cheng X, Zhu S, Cheng B (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Org 105(2):159–173

    Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the projects of the National Key R&D Program of China (2018YFD1000705, 2018YFD1000700), the National Natural Science Foundation of China (Grant No. 31701481), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (19KJA510010), and the Key R&D Program of of Xuzhou-Modern Agriculture (KC20039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Xu or Hunseung Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Dong, T., Xu, T. et al. Identification, characterisation and expression analysis of MADS-box genes in sweetpotato wild relative Ipomoea trifida. Acta Physiol Plant 42, 163 (2020). https://doi.org/10.1007/s11738-020-03153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03153-6

Keywords

Navigation