Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free photoinduced C(sp3)–H borylation of alkanes

Abstract

Boronic acids and their derivatives are some of the most useful reagents in the chemical sciences1, with applications spanning pharmaceuticals, agrochemicals and functional materials. Catalytic C–H borylation is a powerful method for introducing these and other boron groups into organic molecules because it can be used to directly functionalize C–H bonds of feedstock chemicals without the need for substrate pre-activation1,2,3. These reactions have traditionally relied on precious-metal catalysts for C–H bond cleavage and, as a result, display high selectivity for borylation of aromatic C(sp2)–H bonds over aliphatic C(sp3)–H bonds4. Here we report a mechanistically distinct, metal-free borylation using hydrogen atom transfer catalysis5, in which homolytic cleavage of C(sp3)–H bonds produces alkyl radicals that are borylated by direct reaction with a diboron reagent. The reaction proceeds by violet-light photoinduced electron transfer between an N-alkoxyphthalimide-based oxidant and a chloride hydrogen atom transfer catalyst. Unusually, stronger methyl C–H bonds are borylated preferentially over weaker secondary, tertiary and even benzylic C–H bonds. Mechanistic studies indicate that the high methyl selectivity is a result of the formation of a chlorine radical–boron ‘ate’ complex that selectively cleaves sterically unhindered C–H bonds. By using a photoinduced hydrogen atom transfer strategy, this metal-free C(sp3)–H borylation enables unreactive alkanes to be transformed into valuable organoboron reagents under mild conditions and with selectivities that contrast with those of established metal-catalysed protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic C–H borylation reactions.
Fig. 2: Photoinduced C–H borylations of alkanes.
Fig. 3: Photoinduced C–H borylations of silanes.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

Materials and methods, experimental procedures, characterization data, spectra and additional mechanistic discussions are available in the Supplementary Information.

References

  1. Hall, D. G. (ed.) Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials (Wiley, 2011).

  2. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  3. Xu, L. et al. Recent advances in catalytic C–H borylation reactions. Tetrahedron 73, 7123–7157 (2017).

    Article  CAS  Google Scholar 

  4. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

    Article  CAS  Google Scholar 

  5. Capaldo, L. & Ravelli, D. Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2017, 2056–2071 (2017).

    Article  CAS  Google Scholar 

  6. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E., Jr & Smith, M. R., III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  ADS  CAS  Google Scholar 

  7. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  Google Scholar 

  8. Shimada, S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. Formation of aryl- and benzylboronate esters by rhodium-catalyzed C–H bond functionalization with pinacolborane. Angew. Chem. Int. Ed. 40, 2168–2171 (2001).

    Article  CAS  Google Scholar 

  9. Ishiyama, T., Ishida, K., Takagi, J. & Miyaura, N. Palladium-catalyzed benzylic C–H borylation of alkylbenzenes with bis(pinacolato)diboron or pinacolborane. Chem. Lett. 30, 1082–1083 (2001).

    Article  Google Scholar 

  10. Liskey, C. W. & Hartwig, J. F. Iridium-catalyzed C−H borylation of cyclopropanes. J. Am. Chem. Soc. 135, 3375–3378 (2013).

    Article  CAS  Google Scholar 

  11. Ohmura, T., Torigoe, T. & Suginome, M. Functionalization of tetraorganosilanes and permethyloligosilanes at a methyl group on silicon via iridium-catalyzed C(sp 3)−H borylation. Organometallics 32, 6170–6173 (2013).

    Article  CAS  Google Scholar 

  12. Larsen, M. A., Wilson, C. V. & Hartwig, J. F. Iridium-catalyzed borylation of primary benzylic C−H bonds without a directing group: scope, mechanism, and origins of selectivity. J. Am. Chem. Soc. 137, 8633–8643 (2015).

    Article  CAS  Google Scholar 

  13. Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp 3)−H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).

    Article  CAS  Google Scholar 

  14. Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).

    Article  CAS  Google Scholar 

  15. Li, Q., Liskey, C. W. & Hartwig, J. F. Regioselective borylation of the C−H bonds in alkylamines and alkyl ethers. Observation and origin of high reactivity of primary C−H bonds beta to nitrogen and oxygen. J. Am. Chem. Soc. 136, 8755–8765 (2014).

    Article  CAS  Google Scholar 

  16. Larsen, M. A., Cho, S. H. & Hartwig, J. Iridium-catalyzed, hydrosilyl-directed borylation of unactivated alkyl C−H bonds. J. Am. Chem. Soc. 138, 762–765 (2016).

    Article  CAS  Google Scholar 

  17. He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(ii)-catalyzed enantioselective C(sp 3)−H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).

    Article  CAS  Google Scholar 

  18. Reyes, R. L., Iwai, T., Maeda, S. & Sawamura, M. Iridium-catalyzed asymmetric borylation of unactivated methylene C(sp 3)−H bonds. J. Am. Chem. Soc. 141, 6817–6821 (2019).

    Article  CAS  Google Scholar 

  19. Chen, H. & Hartwig, J. F. Catalytic, regiospecific end-functionalization of alkanes: rhenium-catalyzed borylation under photochemical conditions. Angew. Chem. Int. Edn Engl. 38, 3391–3393 (1999).

    Article  CAS  Google Scholar 

  20. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Murphy, J. M., Lawrence, J. D., Kawamura, K., Incarvito, C. & Hartwig, J. F. Ruthenium-catalyzed regiospecific borylation of methyl C–H bonds. J. Am. Chem. Soc. 128, 13684–13685 (2006).

    Article  CAS  Google Scholar 

  22. Ohmura, T., Torigoe, T. & Suginome, M. Iridium-catalysed borylation of sterically hindered C(sp 3)–H bonds: remarkable rate acceleration by a catalytic amount of potassium tert-butoxide. Chem. Commun. 50, 6333–6336 (2014).

    Article  CAS  Google Scholar 

  23. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Ciriano, M. V., Korth, H.-G., van Scheppingen, W. B. & Mulder, P. Thermal stability of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and related N-alkoxyamines. J. Am. Chem. Soc. 121, 6375–6381 (1999).

    Article  CAS  Google Scholar 

  25. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  Google Scholar 

  26. Prokofjevs, A. & Vedejs, E. N-directed aliphatic C–H borylation using borenium cation equivalents. J. Am. Chem. Soc. 133, 20056–20059 (2011).

    Article  CAS  Google Scholar 

  27. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Guo, J.-J., Hu, A. & Zuo, Z. Photocatalytic alkoxy radical-mediated transformations. Tetrahedr. Lett. 59, 2103–2111 (2018).

    Article  CAS  Google Scholar 

  29. Kim, S., Lee, T. A. & Song, Y. Facile generation of alkoxy radicals from N-alkoxyphthalimides. Synlett 1998, 471–472 (1998).

    Article  Google Scholar 

  30. Zhang, J., Li, Y., Zhang, F., Hu, C. & Chen, Y. Generation of alkoxyl radicals by photoredox catalysis enables selective C(sp 3)–H functionalization under mild reaction conditions. Angew. Chem. Int. Ed. 55, 1872–1875 (2016).

    Article  CAS  Google Scholar 

  31. Cheng, Y., Mück-Lichtenfeld, C. & Studer, A. Transition metal-free 1,2-carboboration of unactivated alkenes. J. Am. Chem. Soc. 140, 6221–6225 (2018).

    Article  CAS  Google Scholar 

  32. Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Qiao, Y., Yang, Q. & Schelter, E. J. Photoinduced Miyaura borylation by a rare-earth-metal photoreductant: the hexachlorocerate(iii) anion. Angew. Chem. Int. Ed. 57, 10999–11003 (2018).

    Article  CAS  Google Scholar 

  34. Baban, J. A., Goodchild, N. J. & Roberts, B. P. Electron spin resonance studies of radicals derived from 1,3,2-benzodioxaboroles. J. Chem. Soc. Perkin Trans. 2 1986, 157–161 (1986).

    Article  Google Scholar 

  35. Nunes, P. M. et al. C–H bond dissociation enthalpies in norbornane. An experimental and computational study. Org. Lett. 10, 1613–1616 (2008).

    Article  CAS  Google Scholar 

  36. Sandfort, F., Strieth-Kalthoff, F., Klauck, F. J. R., James, M. J. & Glorius, F. Deaminative borylation of aliphatic amines enabled by visible light excitation of an electron donor–acceptor complex. Chem. Eur. J. 24, 17210–17214 (2018).

    Article  CAS  Google Scholar 

  37. Tedder, J. M. Which factors determine the reactivity and regioselectivity of free radical substitution and addition reactions? Angew. Chem. Int. Edn Engl. 21, 401–410 (1982).

    Article  Google Scholar 

  38. Carestia, A. M., Ravelli, D. & Alexanian, E. J. Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centered radicals. Chem. Sci. 9, 5360–5365 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC (EP/R004978/1) for funding. We gratefully acknowledge A. Sedikides and A. Lennox (University of Bristol) for performing cyclic voltammetry experiments.

Author information

Authors and Affiliations

Authors

Contributions

A.N. and V.K.A. conceived the project, directed the research and prepared the manuscript; C.S. performed the experimental work; all authors analysed the results.

Corresponding authors

Correspondence to Adam Noble or Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-39, Supplementary Tables 1-21, Spectral Data and Supplementary References.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Noble, A. & Aggarwal, V.K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020). https://doi.org/10.1038/s41586-020-2831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2831-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing