Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 20, 2020

Behavior of beryllium halides and triflate in acetonitrile solutions

  • Nils Spang , Matthias Müller , William Augustinov and Magnus R. Buchner EMAIL logo

Abstract

The solution behavior of beryllium halides and triflate in acetonitrile was studied by NMR, IR and Raman spectroscopy. Thereby mononuclear units [(MeCN)2BeX2] (X = Cl, Br, I, OTf) were identified as dominant species in these solutions. The solid state structure of [(MeCN)2Be(OTf)2] has been determined by X-ray diffraction. If only one equivalent of MeCN is used the dinuclear compounds [(MeCN)BeX2]2 (X = Cl, Br, I) are formed. Partial halide and triflate dissociation into the monomeric complexes as well as the formation of hetero-halide complexes [(MeCN)2BeClBr], [(MeCN)2BeClI] and [(MeCN)2BeBrI] was observed.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Magnus R. Buchner, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032Marburg, Germany, E-mail:

Funding source: DFG

Award Identifier / Grant number: BU2725/8-1

Acknowledgment

H. Lars Deubner is thanked for measurement of the Raman spectra. The DFG is gratefully acknowledged for financial support (BU2725/8-1).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by DFG under grant BU2725/8-1.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Perera, L. C., Raymond, O., Henderson, W., Brothers, P. J., Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264–290; https://doi.org/10.1016/j.ccr.2017.09.009.10.1016/j.ccr.2017.09.009Search in Google Scholar

2. Buchner, M. R. Chem. Eur. J. 2019, 25, 12018–12036; https://doi.org/10.1002/chem.201901766.10.1002/chem.201901766Search in Google Scholar PubMed

3. Paparo, A., de Bruin-Dickason, C. N., Jones, C. Aust. J. Chem. 2020; https://doi.org/10.1071/CH20129.10.1071/CH20129Search in Google Scholar

4. Jones, C., Stasch, A. Anal. Sci.: X-Ray Struct. Anal. Online 2007, 23, x115–x116. https://doi.org/10.2116/analscix.23.x115.10.2116/analscix.23.x115Search in Google Scholar

5. Paparo, A., Jones, C. Chem. Asian J. 2019, 14, 486–490; https://doi.org/10.1002/asia.201801800.10.1002/asia.201801800Search in Google Scholar PubMed

6. Neumüller, B., Dehnicke, K., Puchta, R. Z. Anorg. Allg. Chem. 2008, 634, 1473–1476; https://doi.org/10.1002/zaac.200800145.10.1002/zaac.200800145Search in Google Scholar

7. Puchta, R., Kolbig, R., Weller, F., Neumüller, B., Massa, W., Dehnicke, K. Z. Anorg. Allg. Chem. 2010, 636, 2364–2371.10.1002/zaac.201000250Search in Google Scholar

8. Raymond, O., Henderson, W., Lane, J. R., Brothers, P. J., Plieger, P. G. J. Coord. Chem. 2020, 73, 1–16; https://doi.org/10.1080/00958972.2020.1718664.10.1080/00958972.2020.1718664Search in Google Scholar

9. Buchner, M. R., Müller, M. Z. Anorg. Allg. Chem. 2018, 644, 1186–1189; https://doi.org/10.1002/zaac.201800334.10.1002/zaac.201800334Search in Google Scholar

10. Neumüller, B., Dehnicke, K. Z. Anorg. Allg. Chem. 2006, 632, 1681–1686; https://doi.org/10.1002/zaac.200600007.10.1002/zaac.200600007Search in Google Scholar

11. Müller, M., Buchner, M. R. Chem. Eur. J. 2020, 26, 9915–9922; https://doi.org/10.1002/chem.202000259.10.1002/chem.202000259Search in Google Scholar PubMed PubMed Central

12. Buchner, M. R., Müller, M., Dankert, F., Reuter, K., von Hänisch, C. Dalton Trans. 2018, 47, 16393–16397; https://doi.org/10.1039/c8dt03963a.10.1039/C8DT03963ASearch in Google Scholar

13. Arrowsmith, M., Hill, M. S., Kociok-Köhn, G., MacDougall, D. J., Mahon, M. F., Mallov, I. Inorg. Chem. 2012, 51, 13408–13418; https://doi.org/10.1021/ic3022968.10.1021/ic3022968Search in Google Scholar PubMed

14. Arrowsmith, M., Hill, M. S., Kociok-Köhn, G., MacDougall, D. J., Mahon, M. F. Angew. Chem. Int. Ed. 2012, 51, 2098–2100; https://doi.org/10.1002/anie.201107836.10.1002/anie.201107836Search in Google Scholar PubMed

15. Arrowsmith, M., Hill, M. S., Kociok-Köhn, G. Organometallics 2015, 34, 653–662; https://doi.org/10.1021/om501314g.10.1021/om501314gSearch in Google Scholar

16. Arrowsmith, M., Braunschweig, H., Celik, M. A., Dellermann, T., Dewhurst, R. D., Ewing, W. C., Hammond, K., Kramer, T., Krummenacher, I., Mies, J., Radacki, K., Schuster, J. K. Nat. Chem. 2016, 8, 890–894; https://doi.org/10.1038/nchem.2542.10.1038/nchem.2542Search in Google Scholar PubMed

17. Schuster, J. K., Roy, D. K., Lenczyk, C., Mies, J., Braunschweig H. Inorg. Chem. 2019, 58, 2652–2658; https://doi.org/10.1021/acs.inorgchem.8b03263.10.1021/acs.inorgchem.8b03263Search in Google Scholar PubMed

18. GilliardJr.R. J., Abraham, M. Y., Wang, Y., Wei, P., Xie, Y., Quillian, B., SchaeferIIIH. F., Schleyer, P. V. R., Robinson, G. H. J. Am. Chem. Soc. 2012, 134, 9953–9955; https://doi.org/10.1021/ja304514f.10.1021/ja304514fSearch in Google Scholar PubMed

19. Walley, J. E., Breiner, G., Wang, G., Dickie, D. A., Molino, A., Dutton, J. L., Wilson, D. J. D., GilliardJr.R. J. Chem. Commun. 2019, 55, 1967–1970; https://doi.org/10.1039/c8cc10022e.10.1039/C8CC10022ESearch in Google Scholar PubMed

20. Wang, G., Walley, J. E., Dickie, D. A., Pan, S., Frenking, G., GilliardJr.R. J. J. Am. Chem. Soc. 2020, 142, 4560–4564; https://doi.org/10.1021/jacs.9b13777.10.1021/jacs.9b13777Search in Google Scholar PubMed

21. Arnold, T., Braunschweig, H., Ewing, W. C., Kramer, T., Mies, J., Schuster, J. K. Chem. Commun. 2015, 51, 737–740; https://doi.org/10.1039/c4cc08519a.10.1039/C4CC08519ASearch in Google Scholar PubMed

22. Buchner, M. R., Müller, M., Rudel, S. S. Angew. Chem. Int. Ed. 2017, 56, 1130–1134; https://doi.org/10.1002/anie.201610956.10.1002/anie.201610956Search in Google Scholar PubMed

23. Walley, J. E., Obi, A. D., Breiner, G., Wang, G., Dickie, D. A., Molino, A., Dutton, J. L., Wilson, D. J. D., GilliardJr.R. J. Inorg. Chem. 2019, 58, 11118–11126; https://doi.org/10.1021/acs.inorgchem.9b01643.10.1021/acs.inorgchem.9b01643Search in Google Scholar PubMed

24. Paparo, A., Smith, C. D., Jones, C. Angew. Chem. Int. Ed. 2019, 58, 11459–11463; https://doi.org/10.1002/anie.201906609.10.1002/anie.201906609Search in Google Scholar PubMed

25. Buchner, M. R., Spang, N., Müller, M., Rudel, S. S. Inorg. Chem. 2018, 57, 11314–11317; https://doi.org/10.1021/acs.inorgchem.8b01934.10.1021/acs.inorgchem.8b01934Search in Google Scholar PubMed

26. Buchner, M. R., Müller, M., Spang, N. Dalton Trans. 2020, 49, 7708–7712; https://doi.org/10.1039/d0dt01442g.10.1039/D0DT01442GSearch in Google Scholar

27. Buchner, M. R. Chem. Commun. 2020, 56, 8895–8907; https://doi.org/10.1039/d0cc03802d.10.1039/D0CC03802DSearch in Google Scholar PubMed

28. Müller, M., Buchner, M. R. Inorg. Chem. 2019, 58, 13276–13284; https://doi.org/10.1021/acs.inorgchem.9b02139.10.1021/acs.inorgchem.9b02139Search in Google Scholar PubMed

29. Scheibe, B., Buchner, M. R. Eur. J. Inorg. Chem. 2018, 2300–2308; https://doi.org/10.1002/ejic.201800177.10.1002/ejic.201800177Search in Google Scholar

30. Müller, M., Buchner, M. R. Chem. Commun. 2019, 55, 13649–13652; https://doi.org/10.1039/c9cc07712j.10.1039/C9CC07712JSearch in Google Scholar PubMed

31. Müller, M., Karttunen, A. J., Buchner, M. R. Chem. Sci. 2020, 11, 5414–5422; https://doi.org/10.1039/d0sc01112f.10.1039/D0SC01112FSearch in Google Scholar

32. Müller, M., Buchner, M. R. Z. Naturforsch. 2020, 75b, 483–489; https://doi.org/10.1515/znb-2019-0215.10.1515/znb-2019-0215Search in Google Scholar

33. Dressel, M. P., Nogai, S., Berger, R. J. F., Schmidbaur, H. Z. Naturforsch. 2003, 58b, 173–182; https://doi.org/10.1515/znb-2003-0127.10.1515/znb-2003-0127Search in Google Scholar

34. McConvey, I. F., Woods, D., Lewis, M., Gan, Q., Nancarrow, P. Org. Process Res. Dev. 2012, 16, 612–624; https://doi.org/10.1021/op2003503.10.1021/op2003503Search in Google Scholar

35. Fricke, R., Ruschhaupt, F. Z. Anorg. Allg. Chem. 1925, 146, 103–120; https://doi.org/10.1002/zaac.19251460106.10.1002/zaac.19251460106Search in Google Scholar

36. Chavant, C., Daran, J. C., Jeannin, Y., Kauffmann, G., MacCordick, J. Inorg. Chim. Acta. 1975, 14, 281–290; https://doi.org/10.1016/s0020-1693(00)85755-2.10.1016/S0020-1693(00)85755-2Search in Google Scholar

37. Neumüller, B., Dehnicke, K. Z. Anorg. Allg. Chem. 2010, 636, 1438–1440; https://doi.org/10.1002/zaac.201000129.10.1002/zaac.201000129Search in Google Scholar

38. Puchta, R., Neumüller, B., Dehnicke, K. Z. Anorg. Allg. Chem. 2011, 637, 67–74; https://doi.org/10.1002/zaac.201000360.10.1002/zaac.201000360Search in Google Scholar

39. Neumüller, B., Dehnicke, K. Z. Anorg. Allg. Chem. 2005, 631, 2535–2537; https://doi.org/10.1002/zaac.200500212.10.1002/zaac.200500212Search in Google Scholar

40. Tonner, R., Frenking, G., Neumüller, B., Dehnicke, K. Z. Anorg. Allg. Chem. 2007, 633, 1183–1188; https://doi.org/10.1002/zaac.200700131.10.1002/zaac.200700131Search in Google Scholar

41. Neumüller, B., Petz, W., Dehnicke, K. Z. Anorg. Allg. Chem. 2008, 634, 662–668; https://doi.org/10.1002/zaac.200700524.10.1002/zaac.200700524Search in Google Scholar

42. Kanakubo, M., Ikeuchi, H., Satô, G. P. J. Chem. Soc., Faraday Trans. 1998, 94, 3237–3240; https://doi.org/10.1039/a805554h.10.1039/a805554hSearch in Google Scholar

43. Wehrli, F. W., Wehrli, S. L. J. Magn. Reson. 1982, 47, 151–155; https://doi.org/10.1016/0022-2364(82)90331-6.10.1016/0022-2364(82)90331-6Search in Google Scholar

44. Shirvington, P., Florence, T., Harle, A. Aust. J. Chem. 1967, 20, 211–215; https://doi.org/10.1071/ch9670211.10.1071/CH9670211Search in Google Scholar

45. Plieger, P. G., John, K. D., Keizer, T. S., McCleskey, T. M., Burrell, A. K., Martin, R. L. J. Am. Chem. Soc. 2004, 126, 14651–14658; https://doi.org/10.1021/ja046712x.10.1021/ja046712xSearch in Google Scholar PubMed

46. Buchanan, J. K., Plieger, P. G. Z. Naturforsch. 2020, 75b, 459–472; https://doi.org/10.1515/znb-2020-0007.10.1515/znb-2020-0007Search in Google Scholar

47. Viesser, R. V., Ducati, L. C., Tormena, C. F., Autschbach, J. Phys. Chem. Chem. Phys. 2018, 20, 11247–11259.10.1039/C8CP01249KSearch in Google Scholar

48. Müller, M., Buchner, M. R. Z. Kristallogr. 2020, 235, 263–268. https://doi.org/10.1515/zkri–2020–0016.10.1515/zkri-2020-0016Search in Google Scholar

49. Müller, M., Buchner, M. R. Chem. Eur. J. 2019, 25, 11147–11156; https://doi.org/10.1002/chem.201902414.10.1002/chem.201902414Search in Google Scholar PubMed PubMed Central

50. Müller, M., Buchner, M. R. Angew. Chem. Int. Ed. 2018, 57, 9180–9184; https://doi.org/10.1002/anie.201803667.10.1002/anie.201803667Search in Google Scholar PubMed

51. Brackemeyer, T., Erker, G., Fröhlich, R., Prigge, J., Peuchert, U. Chem. Ber. 1997, 130, 899–902; https://doi.org/10.1002/cber.19971300714.10.1002/cber.19971300714Search in Google Scholar

52. Braunschweig, H., Gruß, K. Z. Naturforsch. 2011, 66b, 55–57; https://doi.org/10.1515/znb-2011-0109.10.1515/znb-2011-0109Search in Google Scholar

53. Neelakantan, P. Proc. Indian Acad. Sci. Sect. A 1964, 60, 422–424; https://doi.org/10.1007/bf03047422.10.1007/BF03047422Search in Google Scholar

54. Milligan, D. E., Jacox, M. E. J. Mol. Spectrosc. 1962, 8, 126–133; https://doi.org/10.1016/0022-2852(62)90013-9.10.1016/0022-2852(62)90013-9Search in Google Scholar

55. Kraus, F., Baer, S. A., Buchner, M. R., Karttunen, A. J. Chem. Eur. J. 2012, 18, 2131–2142; https://doi.org/10.1002/chem.201103012.10.1002/chem.201103012Search in Google Scholar PubMed

56. Müller, M., Buchner, M. R. Chem. Eur. J. 2019, 25, 16257–16269; https://doi.org/10.1002/chem.201903439.10.1002/chem.201903439Search in Google Scholar PubMed PubMed Central

57. Buchner, M. R. Z. Naturforsch. 2020, 75b, 405–412; https://doi.org/10.1515/znb-2020-0006.10.1515/znb-2020-0006Search in Google Scholar

58. Naglav, D., Buchner, M. R., Bendt, G., Kraus, F., Schulz, S. Angew. Chem. Int. Ed. 2016, 55, 10562–10576; https://doi.org/10.1002/anie.201601809.10.1002/anie.201601809Search in Google Scholar PubMed

59. Müller, M., Pielnhofer, F., Buchner, M. R. Dalton Trans. 2018, 47, 12506–12510; https://doi.org/10.1039/c8dt01756e.10.1039/C8DT01756ESearch in Google Scholar

60. X-Area, STOE & Cie GmbH: Darmstadt, Germany, 2017.Search in Google Scholar

61. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.10.1107/S0021889811043202Search in Google Scholar PubMed PubMed Central

62. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

63. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.10.1107/S2053273314026370Search in Google Scholar

64. MestReNova, Mestrelab Research S.L.: Santiago de Compostela, Spain, 2011.Search in Google Scholar

65. Opus, Bruker Optik GmbH: Ettlingen, Germany, 2009.Search in Google Scholar

66. OriginPro 2017, OriginLab: Northampton, MA, USA, 2017.Search in Google Scholar

67. Turbomole V7.4 2019. A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; TURBOMOLE GmbH, since 2007. http://www.turbomole.com.Search in Google Scholar

68. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C. Chem. Phys. Lett. 1989, 162, 165–169; https://doi.org/10.1016/0009-2614(89)85118-8.10.1016/0009-2614(89)85118-8Search in Google Scholar

69. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

70. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158; https://doi.org/10.1063/1.478522.10.1063/1.478522Search in Google Scholar

71. Weigend, F., Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.10.1039/b508541aSearch in Google Scholar PubMed


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0141).


Received: 2020-08-18
Accepted: 2020-09-09
Published Online: 2020-10-20
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0141/html
Scroll to top button