Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 20, 2020

Modeling of Separation in a Binary Mixture with Negative Soret Effect in a Cylindrical Thermogravitational Column

  • Sofia V. Kozlova EMAIL logo , Ilya I. Ryzhkov and M. Mounir Bou-Ali

Abstract

A numerical simulation of convective instability of a binary fluid with negative Soret effect in a cylindrical thermogravitational column is performed. The general problem statement, including equations of motion and heat/mass transfer with boundary conditions, are written in cylindrical coordinates. This is implemented in order to take into account the impact of the column geometry on the separation process and stability of the convective flow. The calculations for two cylindrical columns are performed in Ansys Fluent 14.5. The used parameters and values of applied temperature differences between the walls correspond to the reported experimental data. The considered binary fluid is an ethanol–water mixture at a concentration ratio of 0.2204/0.7796. At such a composition the mixture exhibits a negative Soret effect (the lighter component, ethanol, is enriched in the cold region). The results of simulation show that the convective flow in the column with a smaller gap between the walls is unstable for all applied temperature differences, while it remains stable in the column with a larger gap.

Award Identifier / Grant number: 18-41-243005

Award Identifier / Grant number: 075-02-2020-1631

Funding source: Eusko Jaurlaritza

Award Identifier / Grant number: KK-2020/00099

Funding statement: The reported study was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research project No 18-41-243005. The work was also supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of regional Centers for Mathematics Research and Education (Agreement No 075-02-2020-1631). The Basque Government provided support according to project MMMfavIN (KK-2020/00099).

References

[1] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.Search in Google Scholar

[2] G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids, Keter Press, Jerusalem, 1976.Search in Google Scholar

[3] J. S. Turner, Multicomponent convection, Annu. Rev. Fluid Mech.17 (1985), 11–44.10.1146/annurev.fl.17.010185.000303Search in Google Scholar

[4] J. K. Platten, The Soret effect: A review of recent experimental results, J. Appl. Mech.73 (2006), 5–15.10.1115/1.1992517Search in Google Scholar

[5] S. Wiegand, Thermal diffusion in liquid mixtures and polymer solutions, J. Phys. Condens. Matter16 (2004), 357–379.10.1088/0953-8984/16/10/R02Search in Google Scholar

[6] A. Mialdun and V. Shevtsova, Development of optical digital interferometry technique for measurement of thermodiffusion coefficients, Int. J. Heat Mass Transf.51 (2008), 3164–3178.10.1016/j.ijheatmasstransfer.2007.08.020Search in Google Scholar

[7] K. Clusius and G. Dickel, Neues verfahren zur gasentmischung und isotopentrennung, Naturwissenschaften26 (1938), no. 33, 546.10.1007/BF01675498Search in Google Scholar

[8] W. H. Furry, R. C. Jones and L. Onsager, On the theory of isotope separation by thermal diffusion, Phys. Rev.55 (1939), 1083–1095.10.1103/PhysRev.55.1083Search in Google Scholar

[9] B. I. Nikolaev and A. A. Tubin, Effects of concentration-dependent density on liquid separation in a thermal-diffusion column, J. Eng. Phys. Thermophys.18 (1970), 540–543.10.1007/BF00829378Search in Google Scholar

[10] F. H. Horne and R. J. Bearman, Thermogravitational thermal diffusion in liquids. I. The formal theory, J. Chem. Phys.37 (1962), no. 12, 2842–2857.10.1063/1.1733111Search in Google Scholar

[11] J. L. Navarro, J. A. Madariaga and J. M. Savirón, The forgotten effect in liquid thermal diffusion columns, J. Phys. A, Math. Gen.15 (1982), 1683–1687.10.1088/0305-4470/15/5/028Search in Google Scholar

[12] G. Labrosse, Free convection of binary liquid with variable Soret coefficient in thermogravitational column: The steady parallel base states, Phys. Fluids15 (2003), no. 9, 2694–2727.10.1063/1.1597875Search in Google Scholar

[13] K. Haugen and A. Firoozabadi, On measurement of thermal diffusion coefficients in multicomponent mixtures, J. Chem. Phys.122 (2005), 014516.10.1063/1.1829033Search in Google Scholar PubMed

[14] K. Haugen and A. Firoozabadi, Transient separation of multicomponent liquid mixtures in thermogravitational columns, J. Chem. Phys.127 (2007), 154507.10.1063/1.2794043Search in Google Scholar PubMed

[15] I. I. Ryzhkov and V. M. Shevtsova, On thermal diffusion and convection in multicomponent mixtures with application to the thermogravitational column, Phys. Fluids19 (2007), 027101.10.1063/1.2435619Search in Google Scholar

[16] M. M. Bou-Ali and J. K. Platten, Metrology of the thermodiffusion coefficients in a ternary system, J. Non-Equilib. Thermodyn.30 (2005), 385.10.1515/JNETDY.2005.027Search in Google Scholar

[17] A. Leahy–Dios, M. M. Bou-Ali, J. K. Platten and A. Firoozabadi, Measurements of molecular and thermal diffusion coefficients in ternary mixtures, J. Chem. Phys.122 (2005), 234502.10.1063/1.1924503Search in Google Scholar PubMed

[18] H. M. Yeh, The effect of curvature on the transport coefficients of thermal diffusion in concentric–tube column, J. Sep. Sci.11 (1976), no. 5, 455–465.10.1080/01496397608085335Search in Google Scholar

[19] I. I. Ryzhkov, On double diffusive convection with Soret effect in vertical layer between co–axial cylinders, Physica D215 (2006), 191–200.10.1016/j.physd.2006.01.014Search in Google Scholar

[20] S. V. Kozlova and I. I. Ryzhkov, On the separation of multicomponent mixtures in a cylindrical thermogravitational column, Phys. Fluids28 (2016), 117102.10.1063/1.4966640Search in Google Scholar

[21] S. V. Kozlova and I. I. Ryzhkov, The transient separation of multicomponent mixtures in a cylindrical thermogravitational column, Int. J. Heat Mass Transf.126 (2018), 660–669.10.1016/j.ijheatmasstransfer.2018.05.086Search in Google Scholar

[22] L. Onsager and W. W. Watson, Turbulence on convection in gases between concentric vertical cylinders, Phys. Rev.56 (1939), 474–477.10.1103/PhysRev.56.474Search in Google Scholar

[23] B. I. Nikolaev and A. A. Tubin, On the stability of convective motion of a binary mixture in a plane thermal diffusion column, J. Appl. Math. Mech.35 (1971), no. 2, 214–220.10.1016/0021-8928(71)90027-XSearch in Google Scholar

[24] A. Zebib, Convective instabilities in thermogravitational columns, J. Non-Equilib. Thermodyn.32 (2007), 211–219.10.1515/JNETDY.2007.013Search in Google Scholar

[25] I. I. Ryzhkov and V. M. Shevtsova, Convective stability of multicomponent fluids in the thermogravitational column, Phys. Rev. E79 (2009), no. 2, 026308.10.1103/PhysRevE.79.026308Search in Google Scholar PubMed

[26] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría and J. Valencia, Thermogravitational measurement of the Soret coefficient of liquid mixtures, J. Phys. Condens. Matter10 (1998), 3321.10.1088/0953-8984/10/15/009Search in Google Scholar

[27] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga and C. M. Santamaría, Stability of convection in a vertical binary fluid layer with an adverse density gradient, Phys. Rev. E59 (1999), 1250.10.1103/PhysRevE.59.1250Search in Google Scholar

[28] O. Batiste, A. Alonso and I. Mercader, Hydrodynamic stability of binary mixtures in Bénard and thermogravitational cells, J. Non-Equilib. Thermodyn.29 (2004), 359–375.10.1515/JNETDY.2004.061Search in Google Scholar

[29] A. Martin-Mayor, M. M. Bou-Ali, M. Aginagalde and P. Urteaga, Microfluidic separation processes using the thermodiffusion effect, Int. J. Therm. Sci.124 (2018), 279–287.10.1016/j.ijthermalsci.2017.10.024Search in Google Scholar

[30] B. Šeta, E. Lapeira, D. Dubert, F. Gavalda, M. M. Bou-Ali and X. Ruiz, Separation stability in binary mixtures with negative Soret numbers, MATEC Web Conf.286 (2019), 07015.10.1051/matecconf/201928607015Search in Google Scholar

[31] B. Šeta, E. Lapeira, D. Dubert, F. Gavalda, M. M. Bou-Ali and X. Ruiz, Separation under thermogravitational effects in binary mixtures, Eur. Phys. J. E42 (2019), no. 58.10.1140/epje/i2019-11818-7Search in Google Scholar PubMed

[32] P. Kolodner, H. Williams and C. Moe, Optical measurement of the Soret coefficient of ethanol/water solutions, J. Chem. Phys.88 (1988), 6512.10.1063/1.454436Search in Google Scholar

[33] I. I. Ryzhkov, Thermal Diffusion in Mixtures: Equations, Symmetries, Solutions and Their Stability, Publishing House of SB RAS, Novosibirsk, 2013 (in Russian).Search in Google Scholar

[34] M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría and J. Valencia, Measurement of negative Soret coefficients in a vertical fluid layer with an adverse density gradient, Phys. Rev. E62 (2000), no. 1, 1420–1422.10.1103/PhysRevE.62.1420Search in Google Scholar

Received: 2020-04-11
Revised: 2020-07-16
Accepted: 2020-10-02
Published Online: 2020-10-20
Published in Print: 2021-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2020-0045/html
Scroll to top button