Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autopolymerization of 2-bromo-3-methoxythiophene, analysis of reaction products and estimation of polymer structure

Abstract

The study concerning the physical and chemical properties of thiophene derivatives has received much attention because they are incorporated in natural products, medicines, functional materials, and photoresponsive dyes. The autopolymerization reaction is one of the synthesis methods of polythiophenes using halogenated thiophene derivatives. In this paper, we analyzed the products and reaction mechanism of the polymerization reaction of 2-bromo-3-methoxythiophene by investigating the gas, liquid, and solid states using UV-Vis, electron spin resonance (ESR), gas chromatography/mass spectrometry (GC/MS), elemental analysis, NMR, and FT-IR spectroscopy. Consequently, we found a side reaction of the autopolymerization reaction and estimated that the polymerization reaction mechanism occurred in multiple steps. When we employed the brominated alkoxythiophene as a monomer, hydrogen bromide gas was generated to act not only as a catalyst of the polymerization reaction but also as an acid to cleave the alkoxyl group. The results provide useful information for the design of monomers via autopolymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mishra A, Ma CQ, Ba¨uerle P. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev. 2009;109:141–1276.

    Google Scholar 

  2. Swanston J. Thiophene. Ullmann’s Encycl Ind Chem. 2006;36:657–68.

    Google Scholar 

  3. Salmaso G, Gallazzi RMC, Marin RA. In situ conductivity of a polythiophene from a branched alkoxy-substituted tetrathiophene. Enhancement of conductivity by conjugated cross-linking of polymer chains. Chem Mater. 1997;9:791–5.

    Google Scholar 

  4. Schön JH, Dodabalapur A, Bao Z, Kloc CH, Schenker O, Batlogg B. Gate-induced superconductivity in a solution-processed organic polymer film. Nature. 2001;410:189–92.

    PubMed  Google Scholar 

  5. Li XG, Li J, Meng QK, Huang MR. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. J Phys Chem B. 2009;113:9718–27.

    CAS  PubMed  Google Scholar 

  6. Nejati S, Lau KKS. Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. Langmuir. 2011;27:15223–9.

    CAS  PubMed  Google Scholar 

  7. Irvin DJ, Goods SH, Whinnery LL. Direct measurement of extension and force in conductive polymer gel actuators. Chem Mater. 2001;13:1143–5.

    CAS  Google Scholar 

  8. Shiraki T, Dawn A, Tsuchiya Y, Shinkai S. Thermo- and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. J Am Chem Soc. 2010;132:13928–35.

    CAS  PubMed  Google Scholar 

  9. Yao Z, Hu X, Huang B, Zhang L, Liu L, Zhao Y, et al. Halochromism of a polythiophene derivative induced by conformational changes and its sensing application of carbon dioxide. ACS Appl Mater Interfac. 2013;5:5783–7.

    CAS  Google Scholar 

  10. Xu L, Ye Q, Lu X, Lu Q. Electro-responsively reversible transition of polythiophene films from superhydrophobicity to superhydrophilicity. ACS Appl Mater Interfac. 2014;6:14736–43.

    CAS  Google Scholar 

  11. Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69:4108.

    CAS  Google Scholar 

  12. Bao Z, Lovinger AJ. Soluble regioregular polythiophene derivatives as semiconducting materials for field-effect transistors. Chem Mater. 1999;11:2607–12.

    CAS  Google Scholar 

  13. Kline RJ, Mcgehee MD, Toney MF. Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat Mater. 2006;5:222–8.

    Google Scholar 

  14. Stutzmann N, Friend RH, Sirringhaus H. Self-aligned, vertical-channel, polymer field-effect transistors. Science 2003;299:1881–4.

    CAS  PubMed  Google Scholar 

  15. Kumar R, Pillai RG, Pekas N, Wu Y, McCreery RL. Spatially resolved raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J Am Chem Soc. 2012;134:14869–76.

    CAS  PubMed  Google Scholar 

  16. Berggren M, Inganäs O, Gustafsson G, Rasmusson J, Andresson MR, Hjertberg T, et al. Light-emitting diodes with variable colours from polymer blends. Nature 1994;372:444–6.

    CAS  Google Scholar 

  17. Ruseckas A, Namdas EB, Ganguly T, Theander M, Svensson M, Andersson MR, et al. Intra- and interchain luminescence in amorphous and semicrystalline films of phenyl-substituted polythiophene. J Phys Chem B. 2001;105:7624–31.

    CAS  Google Scholar 

  18. Shao M, Keum J, Chen J, He Y, Chen W, Browning JF, et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat Commun. 2014;5:3180.

    PubMed  Google Scholar 

  19. Méhes G, Pan C, Bencheikh F, Zhao L, Sugiyasu K, Takeuchi M, et al. Enhanced electroluminescence from a thiophene-based insulated molecular wire. ACS Macro Lett. 2016;5:781–5.

    Google Scholar 

  20. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater. 2006;5:197–203.

    CAS  Google Scholar 

  21. Otsuka Y, Okamoto Y, Akiyama HY, Umekita K, Tachibana Y, Kuwabata S. Photoinduced formation of polythiophene/TiO2 nanohybrid heterojunction films for solar cell applications. J Phys Chem C. 2008;112:4767–75.

    CAS  Google Scholar 

  22. Briseno AL, Holcombe TW, Boukai AI, Garnett EC, Shelton SW, Fréchet JJM, et al. Oligo- and polythiophene/ZnO hybrid nanowire solar cells. Nano Lett. 2010;10:334–40.

    CAS  PubMed  Google Scholar 

  23. Yan W, Jiang D, Liu Q, Kang Q, Zhou F. Solar cells constructed with polythiophene thin films grown along tethered thiophene−dye conjugates via photoelectrochemical polymerization. ACS Appl Mater Interfac. 2019;11:18755–62.

    CAS  Google Scholar 

  24. Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–277.

    CAS  PubMed  Google Scholar 

  25. Irie M. Diarylethenes for memories and switches. Chem Rev. 2000;100:1685–716.

    CAS  PubMed  Google Scholar 

  26. Nakamura S, Irie M. Thermally irreversible photochromic systems. A theoretical study. J Org Chem. 1988;53:6136–8.

    CAS  Google Scholar 

  27. Dixon S. Elimination reaction of fluorolefins with organolithium compounds. J Org Chem. 1956;21:400–3.

    CAS  Google Scholar 

  28. Uchida K, Sumino H, Shimobayashi Y, Ushiogi Y, Takata A, Kojima Y, et al. Unusual photochromic behavior of c3-methoxy-substituted bis(2-thienyl)perfluorocyclopentene. Bull Chem Soc Jpn. 2009;82:1441–6.

    CAS  Google Scholar 

  29. Kudernac T, Kobayashi T, Uyama A, Uchida K, Nakamura S, Feringa BL. Tuning the temperature dependence for switching in dithienylethene photochromic switches. J Phys Chem A. 2013;117:8222–9.

    CAS  PubMed  Google Scholar 

  30. Matsuda K, Matsuo M, Mizoguti S, Higashiguchi K, Irie M. Reversed photoswitching of intramolecular magnetic interaction using a photochromic bis(2-thienyl)ethene spin coupler. J Phys Chem B. 2002;106:11218–25.

    CAS  Google Scholar 

  31. Demanze F, Yassar A, Garnier F. Alternating donor−acceptor substitutions in conjugated polythiophenes. Macromolecules 1996;29:4267–73.

    CAS  Google Scholar 

  32. Demanze F, Yassar A, Garnier F. Push‐pull substituted polythiophenes: towards charge confinement in molecular quantum wells. Adv Mater. 1995;7:907–10.

    CAS  Google Scholar 

  33. Wagner P, Jolley KW, Officer DL. Why do some alkoxybromothiophenes spontaneously polymerize? Aust J Chem. 2011;64:335–8.

    CAS  Google Scholar 

  34. Bonillo B, Swager TM. Chain-growth polymerization of 2‑chlorothiophenes promoted by lewis acids. J Am Chem Soc. 2012;134:18916–9.

    CAS  PubMed  Google Scholar 

  35. Yin Y, Li Z, Jin J, Tusy C, Xia J. Facile synthesis of poly(3,4-ethylenedioxythiophene) by acid-assisted polycondensation of 5-bromo-2,3-dihydro-thieno[3,4-b][1,4]dioxine. Synth Met. 2013;175:97–102.

    CAS  Google Scholar 

  36. Balasubramanian A, Ku TC, Shih HP, Suman A, Lin HJ, Shih TW, et al. Chain-growth cationic polymerization of 2-halogenated thiophenes promoted by Brønsted acids. Polym Chem. 2014;5:5928–41.

    CAS  Google Scholar 

  37. Tusy C, Jiang K, Peng K, Huang L, Xia J. Effect of monomers’ structure on self-acidassisted polycondensation for the synthesis of poly(3,4-ethylenedioxythiophene) and homopolythiophene. Polym Chem. 2015;6:1014–22.

    CAS  Google Scholar 

  38. Jiang K, Cheng X, Cai X, Yanagida S, Xia J. Exploring novel poly(thiophene-3-yl-amine) through facile self acid assisted-polycondensation. J Polym Sci, Part A: Polym Chem. 2017;55:4003–12.

    CAS  Google Scholar 

  39. Leysen P, Quattrosoldi S, Salatelli E, Koeckelberghs G.Investigation of the dithieno[3,2-b:2’,3’-d]pyrrole polymerization using cross-coupling and cationic mechanisms.Polym. Chem.2019;10:1010–7.

    CAS  Google Scholar 

  40. Jiang K, Cai X, Liu X, Xia J. Exploring functionalized polythiophene derivatives based on thiophenelinker-thiophene platform, analysis of prototype monomer crystal for C-Br/C-H bulk polycondensation and its application for acid detection. Polymer 2019;168:70–6.

    CAS  Google Scholar 

  41. Miller LL, Yu Y, Gunic E, Duan R. An oligothiophene cation radical that forms π‐stacks: a model for polaron aggregation in conducting polymers. Adv Mater. 1995;7:547–8.

    CAS  Google Scholar 

  42. Stanetty P, Puschautz E. Herbizide thienylharnstoffe, II. Monatsh Chem. 1989;120:65–72.

    Google Scholar 

  43. Zhang Y, Hörnfeldt AB, Gronowitz S, Stålhandske C.Pyridine-substituted hydroxythiophenes. III. Dimerization of 3-(2-pyridyl)thiophen-2(5H)-one from the demethylation reaction of 2-methoxy-3-(2-pyridyl)thiophene. X-ray structure determination of (±)-(3R*, 4S*)-3-(2-pyridyl)-4-[2-oxo-3-(1,2-dihydropyridin-2-ylidene)-2,3-dihydrothiophen-5-yl]-4,5-dihydrothiophen-2(3H)-one.Acta Chem Scand.1994;48:843–9.

    CAS  Google Scholar 

  44. Kodama R, Sumaru K, Morishita K, Kanamori T, Hyodo K, Kamitanaka T, et al. A diarylethene as the SO2 gas generator upon uv irradiation. Chem Commun. 2015;51:1736–8.

    CAS  Google Scholar 

  45. Niemi VM, Knuuttila P, Österholm JE, Korvola J. Polymerization of 3-alkylthiophenes with FeCl3. Polymer 1992;33:1559–62.

    CAS  Google Scholar 

  46. Takashina Y, Mitogawa T, Saito K, Hoshino K. Chemical events in oligo(3-methoxythiophene) coating solutions and their effect on the goldlike coating film properties. Langmuir 2018;34:3049–57.

    CAS  PubMed  Google Scholar 

  47. Dong B, Xu J, Zheng L, Hou J. Electrodeposition of conductive poly(3-methoxythiophene) in ionic liquid microemulsions. J Electroanal Chem. 2009;628:60–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr T. Kamitanaka for the GC/MS spectroscopy measurement and Mr I. Kobayashi and Prof Dr T. Nakaoki for the 13C NMR measurement in the solid state. This work was supported by the CREST program (JPMJCR17N2) of the Japan Science and Technology Agency, and the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) as a Supported Program for the Strategic Research Foundation at Private Universities, JSPS KAKENHI Grant Number JP18J20078 in the JSPS Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryo Nishimura or Kingo Uchida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, R., Hattori, Y., Akazawa, M. et al. Autopolymerization of 2-bromo-3-methoxythiophene, analysis of reaction products and estimation of polymer structure. Polym J 53, 429–438 (2021). https://doi.org/10.1038/s41428-020-00435-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00435-1

Search

Quick links