Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of polymer mechanochemistry in responsive materials and additive manufacturing

Abstract

The use of mechanical forces to chemically transform polymers dates back decades. In recent years, the use of mechanochemistry to direct constructive transformations in polymers has resulted in a range of engineered molecular responses that span optical, mechanical, electronic and thermal properties. The chemistry that has been developed is now well positioned for use in materials science, polymer physics, mechanics and additive manufacturing. Here, we review the historical backdrop of polymer mechanochemistry, give an overview of the existing toolbox of mechanophores and associated theoretical methods, and speculate as to emerging opportunities in materials science for which current capabilities are seemingly well suited. Non-linear mechanical responses and internal, amplifying stimulus–response feedback loops, including those enabled by, or coupled to, microstructured metamaterial architectures, are seen as particularly promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of mechanochromism in polymeric materials.
Fig. 2: Representative molecular mechanisms for mechanochromism.
Fig. 3: Visualizing mechanochemical reactions with single-molecule force spectroscopy.
Fig. 4: Stress-induced crosslinking in polymer solutions and polymer networks triggered by mechanophore activation.
Fig. 5: Mechanically triggered transition from insulating to semiconducting properties in materials by the unzipping of a poly(ladderene) mechanophore.
Fig. 6: Examples of mechanophores that release small molecules.
Fig. 7: Structured objects that show a mechanochemical response.

Similar content being viewed by others

References

  1. Staudinger, H. & Heuer, W. Über hochpolymere Verbindungen, 93. Mitteil.: Über das Zerreißen der Faden-Moleküle des Poly-styrols. Ber. Dtsch. Chem. Ges. 67, 1159–1164 (1934).

    Article  Google Scholar 

  2. Encina, M. V., Lissi, E., Sarasúa, M., Gargallo, L. & Radic, D. Ultrasonic degradation of polyvinylpyrrolidone: effect of peroxide linkages. J. Polym. Sci. Polym. Lett. Ed. 18, 757–760 (1980).

    Article  CAS  Google Scholar 

  3. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  Google Scholar 

  4. Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

    Article  CAS  Google Scholar 

  5. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  Google Scholar 

  6. Hu, X., McFadden, M. E., Barber, R. W. & Robb, M. J. Mechanochemical regulation of a photochemical reaction. J. Am. Chem. Soc. 140, 14073–14077 (2018).

    Article  CAS  Google Scholar 

  7. Pill, M. F., East, A. L. L., Marx, D., Beyer, M. K. & Clausen-Schaumann, H. Mechanical activation drastically accelerates amide bond hydrolysis, matching enzyme activity. Angew. Chem. Int. Ed. 58, 9787–9790 (2019).

    Article  CAS  Google Scholar 

  8. Zhang, M. & De Bo, G. A catenane as a mechanical protecting group. J. Am. Chem. Soc. 142, 5029–5033 (2020).

    Article  CAS  Google Scholar 

  9. Chen, Z. et al. The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat. Chem. 12, 302–309 (2020).

    Article  CAS  Google Scholar 

  10. Ong, M. T., Leiding, J., Tao, H., Virshup, A. M. & Martínez, T. J. First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J. Am. Chem. Soc. 131, 6377–6379 (2009).

    Article  CAS  Google Scholar 

  11. Lenhardt, J. M. et al. Trapping a diradical transition state by mechanochemical polymer extension. Science 329, 1057–1060 (2010).

    Article  CAS  Google Scholar 

  12. Lenhardt, J. M. et al. Reactive cross-talk between adjacent tension-trapped transition states. J. Am. Chem. Soc. 133, 3222–3225 (2011).

    Article  CAS  Google Scholar 

  13. Schmidt, S. W., Filippov, P., Kersch, A., Beyer, M. K. & Clausen-Schaumann, H. Single-molecule force-clamp experiments reveal kinetics of mechanically activated silyl ester hydrolysis. ACS Nano 6, 1314–1321 (2012).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 7, 323–327 (2015).

    Article  CAS  Google Scholar 

  15. Faita, G. et al. Solid-supported nitrile oxides as stable and valuable reactive intermediates. Eur. J. Org. Chem. 2002, 1175–1183 (2002).

    Article  Google Scholar 

  16. Krupicˇka, M., Dopieralski, P. & Marx, D. Unclicking the click: metal-assisted mechanochemical cycloreversion of triazoles is possible. Angew. Chem. Int. Ed. 56, 7745–7749 (2017).

    Article  CAS  Google Scholar 

  17. Zhang, M. & De Bo, G. Impact of a mechanical bond on the activation of a mechanophore. J. Am. Chem. Soc. 140, 12724–12727 (2018).

    Article  CAS  Google Scholar 

  18. Kim, T. A., Robb, M. J., Moore, J. S., White, S. R. & Sottos, N. R. Mechanical reactivity of two different spiropyran mechanophores in polydimethylsiloxane. Macromolecules 51, 9177–9183 (2018).

    Article  CAS  Google Scholar 

  19. Lin, Y., Barbee, M. H., Chang, C. C. & Craig, S. L. Regiochemical effects on mechanophore activation in bulk materials. J. Am. Chem. Soc. 140, 15969–15975 (2018).

    Article  CAS  Google Scholar 

  20. Huang, Z. & Boulatov, R. Chemomechanics: chemical kinetics for multiscale phenomena. Chem. Soc. Rev. 40, 2359–2384 (2011).

    Article  CAS  Google Scholar 

  21. Boulatov, R. Reaction dynamics in the formidable gap. Pure Appl. Chem. 83, 25–41 (2010).

    Article  CAS  Google Scholar 

  22. Kean, Z. S., Gossweiler, G. R., Kouznetsova, T. B., Hewage, G. B. & Craig, S. L. A coumarin dimer probe of mechanochemical scission efficiency in the sonochemical activation of chain-centered mechanophore polymers. Chem. Commun. 51, 9157–9160 (2015).

    Article  CAS  Google Scholar 

  23. Berkowski, K. L., Potisek, S. L., Hickenboth, C. R. & Moore, J. S. Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38, 8975–8978 (2005).

    Article  CAS  Google Scholar 

  24. Lenhardt, J. M., Black, A. L. & Craig, S. L. gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J. Am. Chem. Soc. 131, 10818–10819 (2009).

    Article  CAS  Google Scholar 

  25. Wiggins, K. M., Brantley, J. N. & Bielawski, C. W. Methods for activating and characterizing mechanically responsive polymers. Chem. Soc. Rev. 42, 7130–7147 (2013).

    Article  CAS  Google Scholar 

  26. Bowser, B. H. & Craig, S. L. Empowering mechanochemistry with multi-mechanophore polymer architectures. Polym. Chem. 9, 3583–3593 (2018).

    Article  CAS  Google Scholar 

  27. Potisek, S. L., Davis, D. A., Sottos, N. R., White, S. R. & Moore, J. S. Mechanophore-linked addition polymers. J. Am. Chem. Soc. 129, 13808–13809 (2007).

    Article  CAS  Google Scholar 

  28. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  Google Scholar 

  29. Degen, C. M., May, P. A., Moore, J. S., White, S. R. & Sottos, N. R. Time-dependent mechanochemical response of SP-cross-linked PMMA. Macromolecules 46, 8917–8921 (2013).

    Article  CAS  Google Scholar 

  30. Kingsbury, C. M. et al. Shear activation of mechanophore-crosslinked polymers. J. Mater. Chem. 21, 8381–8388 (2011).

    Article  CAS  Google Scholar 

  31. Beiermann, B. A., Kramer, S. L. B., Moore, J. S., White, S. R. & Sottos, N. R. Role of mechanophore orientation in mechanochemical reactions. ACS Macro Lett. 1, 163–166 (2012).

    Article  CAS  Google Scholar 

  32. Gossweiler, G. R. et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216–219 (2014).

    Article  CAS  Google Scholar 

  33. Lee, C. K. et al. Force-induced redistribution of a chemical equilibrium. J. Am. Chem. Soc. 132, 16107–16111 (2010).

    Article  CAS  Google Scholar 

  34. Beiermann, B. A. et al. Environmental effects on mechanochemical activation of spiropyran in linear PMMA. J. Mater. Chem. 21, 8443–8447 (2011).

    Article  CAS  Google Scholar 

  35. Barbee, M. H. et al. Substituent effects and mechanism in a mechanochemical reaction. J. Am. Chem. Soc. 140, 12746–12750 (2018).

    Article  CAS  Google Scholar 

  36. Peterson, G. I., Larsen, M. B., Ganter, M. A., Storti, D. W. & Boydston, A. J. 3D-printed mechanochromic materials. ACS Appl. Mater. Interfaces 7, 577–583 (2015).

    Article  CAS  Google Scholar 

  37. Chen, Y., Yeh, C. J., Qi, Y., Long, R. & Creton, C. From force-responsive molecules to quantifying and mapping stresses in soft materials. Sci. Adv. 6, eaaz5093 (2020).

    Article  CAS  Google Scholar 

  38. Wang, Q., Gossweiler, G. R., Craig, S. L. & Zhao, X. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nat. Commun. 5, 4899 (2014).

    Article  CAS  Google Scholar 

  39. Rohde, R. C. et al. Mechanochromic composite elastomers for additive manufacturing and low strain mechanophore activation. Polym. Chem. 10, 5985–5991 (2019).

    Article  CAS  Google Scholar 

  40. Schwartz, J. J. et al. Reduced strain mechanochemical activation onset in microstructured materials. Polym. Chem. 11, 1122–1126 (2020).

    Article  CAS  Google Scholar 

  41. Celestine, A. D. N., Sottos, N. R. & White, S. R. Strain and stress mapping by mechanochemical activation of spiropyran in poly(methyl methacrylate). Strain 55, e12310 (2019).

    Article  CAS  Google Scholar 

  42. Lee, C. K. et al. Exploiting force sensitive spiropyrans as molecular level probes. Macromolecules 46, 3746–3752 (2013).

    Article  CAS  Google Scholar 

  43. Zhang, H. et al. Spiropyran as a mechanochromic probe in dual cross-linked elastomers. Macromolecules 47, 6783–6790 (2014).

    Article  CAS  Google Scholar 

  44. Li, M., Liu, W., Zhang, Q. & Zhu, S. Mechanical force sensitive acrylic latex coating. ACS Appl. Mater. Interfaces 9, 15156–15163 (2017).

    Article  CAS  Google Scholar 

  45. Chen, H., Yang, F., Chen, Q. & Zheng, J. A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv. Mater. 29, 1606900 (2017).

    Article  CAS  Google Scholar 

  46. Gossweiler, G. R. et al. Mechanochemically active soft robots. ACS Appl. Mater. Interfaces 7, 22431–22435 (2015).

    Article  CAS  Google Scholar 

  47. Barbee, M. H. et al. Mechanochromic stretchable electronics. ACS Appl. Mater. Interfaces 10, 29918–29924 (2018).

    Article  CAS  Google Scholar 

  48. Cho, S. et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346–4357 (2017).

    Article  CAS  Google Scholar 

  49. Park, J. et al. A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins. Adv. Mater. 31, 1808148 (2019).

    Article  CAS  Google Scholar 

  50. Mahmad Rasid, I., Ramirez, J., Olsen, B. D. & Holten-Andersen, N. Understanding the molecular origin of shear thinning in associative polymers through quantification of bond dissociation under shear. Phys. Rev. Mater. 4, 055602 (2020).

    Article  CAS  Google Scholar 

  51. Zhang, H. et al. Multi-modal mechanophores based on cinnamate dimers. Nat. Commun. 8, 1147 (2017).

    Article  CAS  Google Scholar 

  52. Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).

    Article  CAS  Google Scholar 

  53. McFadden, M. E. & Robb, M. J. Force-dependent multicolor mechanochromism from a single mechanophore. J. Am. Chem. Soc. 141, 11388–11392 (2019).

    Article  CAS  Google Scholar 

  54. Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 4, 559–562 (2012).

    Article  CAS  Google Scholar 

  55. Göstl, R., Clough, J. M. & Sijbesma, R. P. in Mechanochemistry in Materials (eds Simon, Y. C. & Craig, S. L.) 53–75 (Royal Society of Chemistry, 2018).

  56. Yang, F., Yuan, Y., Sijbesma, R. P. & Chen, Y. Sensitized mechanoluminescence design toward mechanically induced intense red emission from transparent polymer films. Macromolecules 53, 905–912 (2020).

    Article  CAS  Google Scholar 

  57. Chen, Y. & Sijbesma, R. P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers. Macromolecules 47, 3797–3805 (2014).

    Article  CAS  Google Scholar 

  58. Clough, J. M., Creton, C., Craig, S. L. & Sijbesma, R. P. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence. Adv. Funct. Mater. 26, 9063–9074 (2016).

    Article  CAS  Google Scholar 

  59. Clough, J. M., van der Gucht, J. & Sijbesma, R. P. Mechanoluminescent imaging of osmotic stress-induced damage in a glassy polymer network. Macromolecules 50, 2043–2053 (2017).

    Article  CAS  Google Scholar 

  60. Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    Article  CAS  Google Scholar 

  61. Clough, J. M., Balan, A., van Daal, T. L. J. & Sijbesma, R. P. Probing force with mechanobase-induced chemiluminescence. Angew. Chem. Int. Ed. 55, 1445–1449 (2016).

    Article  CAS  Google Scholar 

  62. Church, D. C., Peterson, G. I. & Boydston, A. J. Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields. ACS Macro Lett. 3, 648–651 (2014).

    Article  CAS  Google Scholar 

  63. Brantley, J. N., Wiggins, K. M. & Bielawski, C. W. Polymer mechanochemistry: the design and study of mechanophores. Polym. Int. 62, 2–12 (2013).

    Article  CAS  Google Scholar 

  64. Li, J. et al. Mechanophore activation at heterointerfaces. J. Am. Chem. Soc. 136, 15925–15928 (2014).

    Article  CAS  Google Scholar 

  65. Song, Y. K. et al. Fluorescence sensing of microcracks based on cycloreversion of a dimeric anthracene moiety. J. Mater. Chem. 22, 1380–1386 (2012).

    Article  CAS  Google Scholar 

  66. Zhang, H. et al. Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers. Chem. Sci. 10, 8367–8373 (2019).

    Article  CAS  Google Scholar 

  67. Cho, S. Y., Kim, J. G. & Chung, C. M. A fluorescent crack sensor based on cyclobutane-containing crosslinked polymers of tricinnamates. Sens. Actuators B Chem. 134, 822–825 (2008).

    Article  CAS  Google Scholar 

  68. Yildiz, D. et al. Anti-stokes stress sensing: mechanochemical activation of triplet–triplet annihilation photon upconversion. Angew. Chem. Int. Ed. 58, 12919–12923 (2019).

    Article  CAS  Google Scholar 

  69. Hoshino, F., Kosuge, T., Aoki, D. & Otsuka, H. Mechanofluorescent polymer/silsesquioxane composites based on tetraarylsuccinonitrile. Mater. Chem. Front. 3, 2681–2685 (2019).

    Article  CAS  Google Scholar 

  70. Kawasaki, K., Aoki, D. & Otsuka, H. Diarylbiindolinones as substituent-tunable mechanochromophores and their application in mechanochromic polymers. Macromol. Rapid Commun. 41, 1900460 (2020).

    Article  CAS  Google Scholar 

  71. Ishizuki, K., Aoki, D., Goseki, R. & Otsuka, H. Multicolor mechanochromic polymer blends that can discriminate between stretching and grinding. ACS Macro Lett. 7, 556–560 (2018).

    Article  CAS  Google Scholar 

  72. Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    Article  CAS  Google Scholar 

  73. Biewend, M., Michael, P. & Binder, W. H. Detection of stress in polymers: mechanochemical activation of CuAAC click reactions in poly(urethane) networks. Soft Matter 16, 1137–1141 (2020).

    Article  CAS  Google Scholar 

  74. Göstl, R. & Sijbesma, R. P. Π-extended anthracenes as sensitive probes for mechanical stress. Chem. Sci. 7, 370–375 (2016).

    Article  CAS  Google Scholar 

  75. Kosuge, T. et al. Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. J. Am. Chem. Soc. 141, 1898–1902 (2019).

    Article  CAS  Google Scholar 

  76. Kida, J. et al. The photoregulation of a mechanochemical polymer scission. Nat. Commun. 9, 3504 (2018).

    Article  CAS  Google Scholar 

  77. Wu, D., Lenhardt, J. M., Black, A. L., Akhremitchev, B. B. & Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 132, 15936–15938 (2010).

    Article  CAS  Google Scholar 

  78. Wang, S., Panyukov, S., Rubinstein, M. & Craig, S. L. Quantitative adjustment to the molecular energy parameter in the Lake–Thomas theory of polymer fracture energy. Macromolecules 52, 2772–2777 (2019).

    Article  CAS  Google Scholar 

  79. Klukovich, H. M., Kouznetsova, T. B., Kean, Z. S., Lenhardt, J. M. & Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 5, 110–114 (2013).

    Article  CAS  Google Scholar 

  80. Wang, J. et al. A remote stereochemical lever arm effect in polymer mechanochemistry. J. Am. Chem. Soc. 136, 15162–15165 (2014).

    Article  CAS  Google Scholar 

  81. Wang, J., Kouznetsova, T. B. & Craig, S. L. Single-molecule observation of a mechanically activated cis-to-trans cyclopropane isomerization. J. Am. Chem. Soc. 138, 10410–10412 (2016).

    Article  CAS  Google Scholar 

  82. Kouznetsova, T. B., Wang, J. & Craig, S. L. Combined constant-force and constant-velocity single-molecule force spectroscopy of the conrotatory ring opening reaction of benzocyclobutene. ChemPhysChem 18, 1486–1489 (2017).

    Article  CAS  Google Scholar 

  83. Wang, J., Kouznetsova, T. B., Boulatov, R. & Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 7, 13433 (2016).

    Article  CAS  Google Scholar 

  84. Schütze, D. et al. Pinpointing mechanochemical bond rupture by embedding the mechanophore into a macrocycle. Angew. Chem. Int. Ed. 54, 2556–2559 (2015).

    Article  CAS  Google Scholar 

  85. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    Article  CAS  Google Scholar 

  86. Levy, A., Feinstein, R. & Diesendruck, C. E. Mechanical unfolding and thermal refolding of single-chain nanoparticles using ligand–metal bonds. J. Am. Chem. Soc. 141, 7256–7260 (2019).

    Article  CAS  Google Scholar 

  87. Wang, F. & Diesendruck, C. E. Effect of disulphide loop length on mechanochemical structural stability of macromolecules. Chem. Commun. 56, 2143–2146 (2020).

    Article  CAS  Google Scholar 

  88. Hosono, N. et al. Forced unfolding of single-chain polymeric nanoparticles. J. Am. Chem. Soc. 137, 6880–6888 (2015).

    Article  CAS  Google Scholar 

  89. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  90. Guzmán, D. L., Randall, A., Baldi, P. & Guan, Z. Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability. Proc. Natl Acad. Sci. USA 107, 1989–1994 (2010).

    Article  Google Scholar 

  91. Kushner, A. M., Vossler, J. D., Williams, G. A. & Guan, Z. A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131, 8766–8768 (2009).

    Article  CAS  Google Scholar 

  92. Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    Article  CAS  Google Scholar 

  93. Wang, J., Piskun, I. & Craig, S. L. Mechanochemical strengthening of a multi-mechanophore benzocyclobutene polymer. ACS Macro Lett. 4, 834–837 (2015).

    Article  CAS  Google Scholar 

  94. Zhang, H. et al. Mechanochromism and mechanical-force-triggered cross-linking from a single reactive moiety incorporated into polymer chains. Angew. Chem. Int. Ed. Engl. 55, 3040–3044 (2016).

    Article  CAS  Google Scholar 

  95. Barbee, M. H., Wang, J., Kouznetsova, T., Lu, M. & Craig, S. L. Mechanochemical ring-opening of allylic epoxides. Macromolecules 52, 6234–6240 (2019).

    Article  CAS  Google Scholar 

  96. Black Ramirez, A. L., Schmitt, A. K., Mahanthappa, M. K. & Craig, S. L. Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers. Faraday Discuss. 170, 337–344 (2014).

    Article  Google Scholar 

  97. Lin, Y., Kouznetsova, T. B. & Craig, S. L. A latent mechanoacid for time-stamped mechanochromism and chemical signaling in polymeric materials. J. Am. Chem. Soc. 142, 99–103 (2020).

    Article  CAS  Google Scholar 

  98. Qiu, W., Gurr, P. A. & Qiao, G. G. Regulating color activation energy of mechanophore-linked multinetwork elastomers. Macromolecules 53, 4090–4098 (2020).

    Article  CAS  Google Scholar 

  99. Jakobs, R. T. M., Ma, S. & Sijbesma, R. P. Mechanocatalytic polymerization and cross-linking in a polymeric matrix. ACS Macro Lett. 2, 613–616 (2013).

    Article  CAS  Google Scholar 

  100. Michael, P. & Binder, W. H. A mechanochemically triggered ‘click’ catalyst. Angew. Chem. Int. Ed. 54, 13918–13922 (2015).

    Article  CAS  Google Scholar 

  101. Verstraeten, F., Göstl, R. & Sijbesma, R. P. Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals. Chem. Commun. 52, 8608–8611 (2016).

    Article  CAS  Google Scholar 

  102. Michael, P., Biewend, M. & Binder, W. H. Mechanochemical activation of fluorogenic CuAAC “click” reactions for stress-sensing applications. Macromol. Rapid Commun. 39, 1800376 (2018).

    Article  CAS  Google Scholar 

  103. Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    Article  CAS  Google Scholar 

  104. Black Ramirez, A. L. et al. Microstructure of copolymers formed by the reagentless, mechanochemical remodeling of homopolymers via pulsed ultrasound. ACS Macro Lett. 1, 23–27 (2012).

    Article  CAS  Google Scholar 

  105. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

    Article  CAS  Google Scholar 

  106. Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization, and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

    Article  CAS  Google Scholar 

  107. Silberstein, M. N. et al. Modeling mechanophore activation within a crosslinked glassy matrix. J. Appl. Phys. 114, 023504 (2013).

    Article  CAS  Google Scholar 

  108. Silberstein, M. N. et al. Modeling mechanophore activation within a viscous rubbery network. J. Mech. Phys. Solids 63, 141–153 (2014).

    Article  CAS  Google Scholar 

  109. Avdoshenko, S. M. & Makarov, D. E. Reaction coordinates and pathways of mechanochemical transformations. J. Phys. Chem. B 120, 1537–1545 (2016).

    Article  CAS  Google Scholar 

  110. Tian, Y. & Boulatov, R. Comparison of the predictive performance of the Bell–Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem. Commun. 49, 4187–4189 (2013).

    Article  CAS  Google Scholar 

  111. Akbulatov, S. & Boulatov, R. Experimental polymer mechanochemistry and its interpretational frameworks. ChemPhysChem 18, 1422–1450 (2017).

    Article  CAS  Google Scholar 

  112. Anderson, L. & Boulatov, R. Polymer mechanochemistry: a new frontier for physical organic chemistry. Adv. Phys. Org. Chem. 52, 87–143 (2018).

    CAS  Google Scholar 

  113. Ribas-Arino, J. & Marx, D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112, 5412–5487 (2012).

    Article  CAS  Google Scholar 

  114. Larsen, M. B. & Boydston, A. J. ‘Flex-activated’ mechanophores: using polymer mechanochemistry to direct bond bending activation. J. Am. Chem. Soc. 135, 8189–8192 (2013).

    Article  CAS  Google Scholar 

  115. Larsen, M. B. & Boydston, A. J. Successive mechanochemical activation and small molecule release in an elastomeric material. J. Am. Chem. Soc. 136, 1276–1279 (2014).

    Article  CAS  Google Scholar 

  116. Akbulatov, S. et al. Experimentally realized mechanochemistry distinct from force- accelerated scission of loaded bonds. Science 303, 299–303 (2017).

    Article  CAS  Google Scholar 

  117. Diesendruck, C. E. et al. Proton-coupled mechanochemical transduction: a mechanogenerated acid. J. Am. Chem. Soc. 134, 12446–12449 (2012).

    Article  CAS  Google Scholar 

  118. Hu, X., Zeng, T., Husic, C. C. & Robb, M. J. Mechanically triggered small molecule release from a masked furfuryl carbonate. J. Am. Chem. Soc. 141, 15018–15023 (2019).

    Article  CAS  Google Scholar 

  119. Cao, B., Boechler, N. & Boydston, A. J. Additive manufacturing with a flex activated mechanophore for nondestructive assessment of mechanochemical reactivity in complex object geometries. Polymer 152, 4–8 (2018).

    Article  CAS  Google Scholar 

  120. Kochhar, G. S., Heverly-Coulson, G. S. & Mosey, N. J. in Polymer Mechanochemistry (ed. Boulatov, R.) 37–96 (Springer, 2015).

  121. Stauch, T. & Dreuw, A. Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem. Rev. 116, 14137–14180 (2016).

    Article  CAS  Google Scholar 

  122. Wollenhaupt, M., Schran, C., Krupicˇka, M. & Marx, D. Force-induced catastrophes on energy landscapes: mechanochemical manipulation of downhill and uphill bifurcations explains the ring-opening selectivity of cyclopropanes. ChemPhysChem 19, 837–847 (2018).

    Article  CAS  Google Scholar 

  123. Dopieralski, P. et al. Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution. Nat. Chem. 9, 164–170 (2017).

    Article  CAS  Google Scholar 

  124. Ribas-Arino, J., Shiga, M. & Marx, D. Understanding covalent mechanochemistry. Angew. Chem. Int. Ed. 48, 4190–4193 (2009).

    Article  CAS  Google Scholar 

  125. Beyer, M. K. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000).

    Article  CAS  Google Scholar 

  126. Plotnikov, N. V. & Martinez, T. J. Molecular origin of mechanical sensitivity of the reaction rate in anthracene cyclophane isomerization reveals structural motifs for rational design of mechanophores. J. Phys. Chem. C 120, 17898–17908 (2016).

    Article  CAS  Google Scholar 

  127. Wang, J. et al. Catch and release: orbital symmetry guided reaction dynamics from a freed ‘tension trapped transition state’. J. Org. Chem. 80, 11773–11778 (2015).

    Article  CAS  Google Scholar 

  128. Stauch, T. & Dreuw, A. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules. J. Chem. Phys. 140, 134107 (2014).

    Article  CAS  Google Scholar 

  129. Stauch, T. & Dreuw, A. Force–spectrum relations for molecular optical force probes. Angew. Chem. Int. Ed. 53, 2759–2761 (2014).

    Article  CAS  Google Scholar 

  130. Li, M., Zhang, Q., Zhou, Y. N. & Zhu, S. Let spiropyran help polymers feel force! Prog. Polym. Sci. 79, 26–39 (2018).

    Article  CAS  Google Scholar 

  131. Wang, Q., Gossweiler, G. R., Craig, S. L. & Zhao, X. Mechanics of mechanochemically responsive elastomers. J. Mech. Phys. Solids 82, 320–344 (2015).

    Article  CAS  Google Scholar 

  132. Takaffoli, M., Zhang, T., Parks, D. & Zhao, X. Mechanochemically responsive viscoelastic elastomers. J. Appl. Mech. 83, 071007 (2016).

    Article  CAS  Google Scholar 

  133. Khiêm, V. N. & Itskov, M. Analytical network-averaging of the tube model: Mechanically induced chemiluminescence in elastomers. Int. J. Plast. 102, 1–15 (2018).

    Article  CAS  Google Scholar 

  134. Lavoie, S. R., Long, R. & Tang, T. Modeling the mechanics of polymer chains with deformable and active bonds. J. Phys. Chem. B 124, 253–265 (2020).

    Article  CAS  Google Scholar 

  135. Gossweiler, G. R., Kouznetsova, T. B. & Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 137, 6148–6151 (2015).

    Article  CAS  Google Scholar 

  136. van de Laar, T. et al. Light from within: Sensing weak strains and femtonewton forces in single molecules. Chem 4, 269–284 (2018).

    Article  CAS  Google Scholar 

  137. Wang, Z. et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv. Mater. 27, 6469–6474 (2015).

    Article  CAS  Google Scholar 

  138. Beiermann, B. A. et al. The effect of polymer chain alignment and relaxation on force-induced chemical reactions in an elastomer. Adv. Funct. Mater. 24, 1529–1537 (2014).

    Article  CAS  Google Scholar 

  139. Adhikari, R. & Makarov, D. E. Mechanochemical kinetics in elastomeric polymer networks: heterogeneity of local forces results in nonexponential kinetics. J. Phys. Chem. B 121, 2359–2365 (2017).

    Article  CAS  Google Scholar 

  140. Lin, Y., Hansen, H. R., Brittain, W. J. & Craig, S. L. Strain-dependent kinetics in the cis-to-trans isomerization of azobenzene in bulk elastomers. J. Phys. Chem. B 123, 8492–8498 (2019).

    Article  CAS  Google Scholar 

  141. Cao, Z. Highly stretchable tough elastomers crosslinked by spiropyran mechanophores for strain-induced colorimetric sensing. Macromol. Chem. Phys. 221, 2000190 (2020).

    Article  CAS  Google Scholar 

  142. Lu, Y. et al. Visualization of the slide-ring effect: a study on movable cross-linking points using mechanochromism. Chem. Commun. 56, 3361–3364 (2020).

    Article  CAS  Google Scholar 

  143. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  144. Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article  CAS  Google Scholar 

  145. Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014).

    Article  Google Scholar 

  146. Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Article  Google Scholar 

  147. Lee, H., Xia, C. & Fang, N. X. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter 6, 4342–4345 (2010).

    Article  CAS  Google Scholar 

  148. Black, A. L., Lenhardt, J. M. & Craig, S. L. From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 21, 1655–1663 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This effort was supported by the US Army Research Laboratory and the Army Research Office under grant W911NF-17-1-0595 to N.B., A.J.B., S.L.C., A.N. and D.W.S. A.J.B. gratefully acknowledges support from the Yamamoto family.

Author information

Authors and Affiliations

Authors

Contributions

N.B., A.J.B., S.L.C., A.N. and D.W.S. made substantial contributions to discussion of content, writing and editing of the manuscript. M.A.G., A.B., R.B., Y.L., B.E.L. and H.S. made substantial contributions to the writing.

Corresponding authors

Correspondence to Nicholas Boechler, Andrew J. Boydston, Stephen L. Craig, Alshakim Nelson or Duane W. Storti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanem, M.A., Basu, A., Behrou, R. et al. The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat Rev Mater 6, 84–98 (2021). https://doi.org/10.1038/s41578-020-00249-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00249-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing