Synlett 2021; 32(08): 775-784
DOI: 10.1055/s-0040-1707320
account

Exploration of Iron- and α-Ketoglutarate-Dependent Dioxygenases as Practical Biocatalysts in Natural Product Synthesis

Hans Renata
Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA   Email: hrenata@scripps.edu
› Author Affiliations
The work described in this Account is supported, in part, by the National Institutes of Health Grant GM128895.


Abstract

Catalytic C–H oxidation is a powerful transformation with enormous promise to streamline access to complex molecules. In recent years, biocatalytic C–H oxidation strategies have received tremendous attention due to their potential to address unmet regio- and stereoselectivity challenges that are often encountered with the use of small-molecule-based catalysts. This Account provides an overview of recent contributions from our laboratory in this area, specifically in the use of iron- and α-ketoglutarate-dependent dioxygenases in chemoenzymatic syntheses of complex natural products.

1 Introduction

2 Overview of Natural Oxygenases

3 C5 Hydroxylation of Aliphatic Amino Acids

4 Chemoenzymatic Synthesis of Tambromycin

5 Chemoenzymatic Synthesis of Cepafungin I and Related Analogues

6 Chemoenzymatic Synthesis of GE81112 B1 and Related Analogues

7 Conclusion and Future Direction



Publication History

Received: 11 August 2020

Accepted after revision: 06 September 2020

Article published online:
26 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1b Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 1c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 1d Hong B, Luo T, Lei X. ACS Cent. Sci. 2020; 6: 622
    • 1e Chakrabarty S, Wang Y, Perkins JC, Narayan AR. H. Chem. Soc. Rev. 2020; ; DOI: 10.1039/D0CS00440E
  • 2 Shilov AE, Shteinman AA. Coord. Chem. Rev. 1977; 24: 97
  • 3 Liu Y, You T, Wang H.-X, Tang Z, Zhou C.-Y, Che C.-M. Chem. Soc. Rev. 2020; 49: 5310
  • 4 Pereira MM, Dias LD, Calvete MJ. F. ACS Catal. 2018; 8: 10784
  • 5 Oloo WN, Que LJr. Acc. Chem. Res. 2015; 48: 2612
  • 7 Vicens L, Olivo G, Costas M. ACS Catal. 2020; 10: 8611
  • 8 Johnson SL, Combee LA, Hilinski MK. Synlett 2018; 29: 2331
    • 9a Fraga BM, González P, Hernández MG, Suárez S. Tetrahedron 2005; 61: 5623
    • 9b García-Granados A, Melguizo E, Parra A, Pérez FL, Simeó Y, Viseras B, Arias JM. Tetrahedron 2000; 56: 6517
    • 9c Fraga BM, Hernández MG, González P, López M, Suárez S. Tetrahedron 2001; 57: 761
    • 9d Fraga BM, Guillermo R, Hernández MG, Chamy MC, Garbarino JA. Tetrahedron 2004; 60: 7921
  • 10 King-Smith E, Zwick CR. III, Renata H. Biochemistry 2018; 57: 403
    • 11a Munro AM, Girvan HM, Mason AE, Dunford AJ, McLean KJ. Trends Biochem. Sci. 2013; 38: 140
    • 11b Fasan R. ACS Catal. 2012; 2: 647
    • 12a Ferraro DJ, Gakhar L, Ramaswamy S. Biochem. Biophys. Res. Commun. 2005; 338: 175
    • 12b Barry SM, Challis GL. ACS Catal. 2013; 3: 2362
    • 13a Huijbers MM. E, Montersino S, Westphal AH, Tischler D, van Berkel WJ. H. Arch. Biochem. Biophys. 2014; 544: 2
    • 13b Baker Dockrey SA, Narayan AR. H. Tetrahedron 2019; 75: 1115
    • 14a Hausinger RP. Crit. Rev. Biochem. Mol. Biol. 2004; 39: 21
    • 14b Wu L.-F, Meng S, Tang G.-L. Biochim. Biophys. Acta 2016; 1864: 453
    • 14c Zwick CR. III, Renata H. Nat. Prod. Rep. 2020; 37: 1065
    • 15a Lewis JC, Mantovani SM, Fu Y, Snow CD, Komor RS, Wong CH, Arnold FH. ChemBioChem 2010; 11: 2502
    • 15b Lewis JC, Arnold FH. Chimia 2009; 63: 309
  • 16 Kille S, Zilly FE, Acevedo JP, Reetz MT. Nat. Chem. 2011; 3: 738
    • 17a Lowell AN, Demars MD. II, Slocum ST, Yu F, Anand K, Chemler JA, Koravaki N, Priessnitz JK, Park SR, Koch AA, Schultz PJ, Sherman DH. J. Am. Chem. Soc. 2017; 139: 7913
    • 17b Gilbert MM, DeMars MD. II, Yang S, Grandner JM, Wang S, Wang H, Narayan AR. H, Sherman DH, Houk KN, Montgomery J. ACS Cent. Sci. 2017; 3: 1304
    • 18a Whitehouse CJ, Bell SG, Wong L.-L. Chem. Soc. Rev. 2012; 41: 1218
    • 18b Urlacher VB, Girhard M. Trends Biotechnol. 2019; 37: 882
  • 19 Baker Dockrey SA, Lukowski AL, Becker MR, Narayan AR. H. Nat. Chem. 2018; 10: 119
    • 20a Hudlicky T, Olivo HF. J. Am. Chem. Soc. 1992; 114: 9694
    • 20b Hudlicky T, Tian X, Königsberger L, Maurya R, Rouden J, Fan B. J. Am. Chem. Soc. 1996; 118: 10752
  • 21 Chang EL, Bolte B, Lan P, Willis AC, Banwell MG. J. Org. Chem. 2016; 81: 2078
  • 22 Lukowski AL, Ellinwood DC, Hinze ME, DeLuca RJ, Du Bois J, Hall S, Narayan AR. H. J. Am. Chem. Soc. 2018; 140: 11863
  • 23 Martinez S, Hausinger RP. J. Biol. Chem. 2015; 290: 20702
  • 24 Hutton JJ. Jr, Trappel AL, Undenfriend S. Biochem. Biophys. Res. Commun. 1966; 24: 179
  • 25 Loenarz C, Schofield CJ. Trends Biochem. Sci. 2011; 36: 7
  • 26 Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. Nat. Prod. Rep. 2013; 30: 21
  • 27 Hibi M, Ogawa J. Appl. Microbiol. Biotechnol. 2014; 98: 3869
  • 28 He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J.-Q. Science 2014; 343: 1216
  • 29 Reddy LR, Reddy BV. S, Corey EJ. Org. Lett. 2006; 8: 2819
  • 30 Smirnov SV, Kodera T, Samsonova NN, Kotlyarova VA, Rushkevich NY, Kivero AD, Sokolov PM, Hibi M, Ogawa J, Shimizu S. Appl. Microbiol. Biotechnol. 2010; 88: 719
  • 31 Johnston RM, Chu LN, Liu M, Goldberg SL, Goswami A, Patel RN. Enzyme Microb. Technol. 2009; 45: 484
  • 32 Luesch H, Hoffmann D, Hevel JM, Becker JE, Golakoti T, Moore RE. J. Org. Chem. 2003; 68: 83
  • 33 Jiang W, Cacho RA, Chiou G, Garg NK, Tang Y, Walsh CT. J. Am. Chem. Soc. 2013; 135: 4457
  • 34 Hibi M, Kawashima T, Sokolov PM, Smirnov SV, Kodera T, Sugiyama M, Shimizu S, Yokozeki K, Ogawa J. Appl. Microbiol. Biotechnol. 2013; 97: 2467
    • 35a Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, König C, Ammerman NC, Belén Barrio M, Borchers K, Bordon-Pallier F, Brönstrup M, Courtemanche G, Gerlitz M, Geslin M, Hammann P, Heinz DW, Hoffmann H, Klieber S, Kohlmann M, Kurz M, Lair C, Matter H, Nuermberger E, Tyagi S, Fraisse L, Grosset JH, Lagrange S, Müller R. Science 2015; 348: 1106
    • 35b Lukat P, Katsuyama Y, Wenzel S, Binz T, König C, Blankenfeldt W, Brönstrup M, Müller R. Chem. Sci. 2017; 8: 7521
  • 36 Zwick CR. III, Renata H. J. Am. Chem. Soc. 2018; 140: 1165
  • 37 Namba K, Shinada T, Teramoto T, Ohfune Y. J. Am. Chem. Soc. 2000; 122: 10708
    • 38a Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 38b Quasdorf KW, Huters AD, Lodewyk MW, Tantillo DH, Garg NK. J. Am. Chem. Soc. 2012; 134: 1396
  • 39 Zwick CR. III, Renata H. J. Org. Chem. 2018; 83: 7407
  • 40 Nodwell MB, Yang H, Čolović M, Yuan Z, Merkens H, Martin RE, Benard F, Schaffer P, Britton R. J. Am. Chem. Soc. 2017; 139: 3595
  • 41 Zwick CR. III, Renata H. Tetrahedron 2018; 74: 6469
  • 42 Zhang X, Renata H. Tetrahedron 2019; 75: 3253
  • 43 Li L, Tang M.-C, Tang S, Gao S, Soliman S, Hang L, Xu W, Ye T, Watanabe K, Tang Y. J. Am. Chem. Soc. 2018; 140: 2067
  • 44 Mattay J, Hüttel W. ChemBioChem 2017; 18: 1523
    • 45a Goering AW, McClure RA, Doroghazi JR, Albright JC, Haverland NA, Zhang Y, Ju KS, Thomson RJ, Metcalf WW, Kelleher NL. ACS Cent. Sci. 2016; 2: 99
    • 45b Zhang X, King-Smith E, Renata H. Angew. Chem. Int. Ed. 2018; 57: 5037
  • 46 Baud D, Saaidi P.-L, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit J.-L, Salanoubat M, Weissenbach J, de Beradinis V, Zaparucha V. ChemCatChem 2014; 6: 3012
  • 47 Thomas JG, Ayling A, Baneyx F. Appl. Biochem. Biotechnol. 1997; 66: 197
  • 48 Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS. J. Am. Chem. Soc. 2015; 137: 10160
  • 49 Hanessian S, Sharma R. Heterocycles 2000; 52: 1231
  • 50 Steffan T, Renukappa-Gutke R, Höfner G, Wanner KT. Bioorg. Med. Chem. 2015; 23: 1284
  • 51 Krahn D, Ottmann C, Kaiser M. Nat. Prod. Rep. 2011; 28: 1854
  • 52 Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig A.-K, Kalesse M. Angew. Chem. Int. Ed. 2013; 52: 5450
  • 53 Bonvini P, Zorzi E, Basso G, Rosolen A. Leukemia 2007; 21: 838
  • 54 Stein ML, Beck P, Kaiser M, Dudler R, Becker CF. W, Groll M. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 18367
  • 55 Schmidt U, Kleefeldt A, Mangold R. J. Chem. Soc., Chem. Commun. 1992; 1687
  • 56 Schellenberg B, Bigler L, Dudler R. Environ. Microbiol. 2007; 9: 1640
  • 57 Amatuni A, Renata H. Org. Biomol. Chem. 2019; 17: 1736
  • 58 Amatuni A, Shuster A, Adibekian A, Renata H. Cell. Chem. Biol. 2020; in press; DOI: 10.1016/j.chembiol.2020.07.012.
  • 59 Zwick CR. III, Sosa MB, Renata H. ChemRxiv 2019; preprint; DOI: 10.26434/chemrxiv.9684554.v2.
  • 60 Brandi L, Lazzarini A, Cavaletti L, Abbondi M, Corti E, Ciciliato I, Gastaldo L, Marazzi A, Feroggio M, Fabbretti A, Maio A, Colombo L, Donadio S, Marinelli F, Losi D, Gualerzi CO, Selva E. Biochemistry 2006; 45: 3692
  • 61 Fabbretti A, Schedlbauer A, Brandi L, Kaminishi T, Giuliodori AM, Garofalo R, Ochoa-Lizarralde B, Takemoto C, Yokoyama S, Connell SR, Gualerzi CO, Fucini P. Proc. Natl. Acad. Sci. U.S.A. 2016; 113: E2286
  • 62 Binz TM, Maffioli SI, Sosio M, Donadio S, Müller R. J. Biol. Chem. 2010; 285: 32710
  • 63 Zwick CR. III, Sosa MB, Renata H. Angew. Chem. Int. Ed. 2019; 58: 18854
  • 64 Jaganathen A, Ehret-Sabatier L, Bouchet M.-J, Goeldner MP. Helv. Chim. Acta 1990; 73: 86
    • 65a Seiple IB, Mercer JA. M, Sussman RJ, Zhang Z, Myers AG. Angew. Chem. Int. Ed. 2014; 53: 4642
    • 65b Patel J, Clavé G, Renard P.-Y, Franck X. Angew. Chem. Int. Ed. 2008; 47: 4224
    • 66a Pantel L, Florin T, Dobosz-Bartoszek M, Racine E, Sarciaux M, Serri M, Houard J, Campagne JM, de Figueiredo RM, Midrier C, Gaudriault S, Givaudan A, Lanois A, Forst S, Aumelas A, Cotteaux-Lautard C, Bolla JM, Vingsbo Lundberg C, Huseby DL, Hughes D, Villain-Guillot P, Mankin AS, Polikanov YS, Gualtieri M. Mol. Cell. 2018; 70: 83
    • 66b Wang L, Zhu M, Zhang Q, Zhang X, Yang P, Liu Z, Deng Y, Zhu Y, Huang X, Han L, Li S, He J. ACS Chem. Biol. 2017; 12: 3067
  • 67 Zallot R, Oberg N, Gerlt JA. Biochemistry 2019; 58: 4169
  • 68 Li J, Zhang X, Renata H. Angew. Chem. Int. Ed. 2019; 58: 11657
  • 69 Zhang X, King-Smith E, Dong L.-B, Yang L.-Y, Rudolf JD, Shen B, Renata H. ChemRxiv 2020; preprint; DOI: 10.26434/chemrxiv.7663112.v2.
    • 70a Doyon TJ, Perkins JC, Baker Dockrey SA, Skinner KC, Zimmerman PM, Narayan AR. H. J. Am. Chem. Soc. 2019; 141: 20269
    • 70b Chekan JR, McKinnie SM. K, Moore ML, Poplawski SG, Michael TP, Moore BS. Angew. Chem. Int. Ed. 2019; 58: 8454
    • 70c Mailyan AK, Chen JL, Li W, Keller AA, Sternisha SM, Miller BG, Zakarian A. J. Am. Chem. Soc. 2018; 140: 6027
    • 70d Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K, Fuchs M. Angew. Chem. Int. Ed. 2019; 58: 8226