Synthesis 2021; 53(07): 1301-1306
DOI: 10.1055/s-0040-1705938
paper

Palladium Nanoparticles Anchored on Magnesium Organosilicate: An Effective and Selective Catalyst for the Heck Reaction

Beatriz F. dos Santos
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil   Email: nelsondomingues@ufgd.edu.br
,
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil   Email: nelsondomingues@ufgd.edu.br
,
Aline R. de Oliveira
b   State University of Maringá – UEM, Maringá/PR, Brazil
,
Maria H. Sarragiotto
b   State University of Maringá – UEM, Maringá/PR, Brazil
,
Andrelson W. Rinaldi
b   State University of Maringá – UEM, Maringá/PR, Brazil
,
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil   Email: nelsondomingues@ufgd.edu.br
› Author Affiliations
The author N.L.C.D thanks the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT/Brazil - Chamada FUNDECT/CNPq No 15/2014 – PRONEM – MS) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Chamada CNPq No 12/2017 – Bolsas de Produtividade em Pesquisa – PQ) for financial support and a fellowship. Furthermore, the authors N.L.C.D. and B.F.S thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) for a research fellowship (Auxílio No 2209/2015, Processo No 23038.008241/2014-89, Programa CAPES-FAPCO) and a scholarship.


Abstract

A new and effective palladium catalyst supported on a magnesium organosilicate for application in the Heck reaction is presented. A group of compounds comprising 22 examples were synthesized in moderate to high yields (up to 99%) within a short time. The palladium supported on magnesium organosilicate catalyst was characterized as an amorphous solid by SEM, containing around 33% of palladium inside the solid, and even with this low quantity of palladium, the catalyst was very efficient in the Heck reaction. Besides, based on the Scherrer equation, the crystallite size of the synthesized palladium nanoparticles was ultrasmall (around 1.3 nm). This strategy is a simple and efficient route for the formation of C–C bonds via the Heck cross-coupling reaction.

Supporting Information



Publication History

Received: 25 June 2020

Accepted after revision: 16 September 2020

Article published online:
22 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Karimi B, Enders D. Org. Lett. 2006; 8: 1237
    • 2a Trost BM, Knopf JD, Brindle CS. Chem. Rev. 2016; 116: 15035
    • 2b Rousée K, Bouillon J.-P, Couve-Bonnaire S, Pannecoucke X. Org. Lett. 2016; 18: 540
  • 3 Aukland MH, Talbot FJ. T, Fernández-Salas JA, Ball M, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 9785 ; Angew. Chem. 2018, 130, 9933
  • 4 Patel HH, Sigman MS. J. Am. Chem. Soc. 2015; 137: 3462
  • 5 Liu X.-L, Li B, Gu Z.-H. J. Org. Chem. 2015; 80: 7547
  • 6 Cong H, Fu GC. J. Am. Chem. Soc. 2014; 136: 3788
  • 7 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
  • 8 Sun R, Liu B, Li B.-G, Jie S. ChemCatChem 2016; 8: 3261
  • 9 Wali A, Pillai SM, Satish S. React. Kinet. Catal. Lett. 1997; 60: 189
  • 10 Khajehzadeh M, Moghadam M. J. Organomet. Chem. 2018; 863: 60
  • 11 Liu Y, Bai X, Li S. Microporous Mesoporous Mater. 2018; 260: 40
  • 12 Taher A, Lee D.-J, Lee I.-M, Rahman ML, Sarker MS. Bull. Korean Chem. Soc. 2016; 37: 1478
  • 13 Sato T, Ohno A, Sarkar SM, Uozumi Y, Yamada YM. A. ChemCatChem 2015; 7: 2141
  • 14 Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Faryadi S. C. R. Chim. 2017; 20: 132
  • 15 Huang L, Subramanian R, Wang J, Kwon Oh J, Ye Z. Mol. Catal. 2020; 488: 110923
  • 16 Yu L, Huang Y, Wei Z, Ding Y, Su C, Xu Q. J. Org. Chem. 2015; 80: 8677
  • 17 Patel HA, Sharma SK, Jasra RV. J. Mol. Catal. A: Chem. 2008; 286: 31
  • 18 Moura KO, Pastore HO. Microporous Mesoporous Mater. 2014; 190: 292
    • 19a Houdayer A, Schneider R, Billaud D, Ghanbaja J, Lambert J. Appl. Organomet. Chem. 2005; 19: 1239
    • 19b Somjit V, Wong Chi Man M, Ouali A, Sangtrirutnugul P, Ervithayasuporn V. ChemistrySelect 2018; 3: 753
    • 20a Jagtap S. Catalysts 2017; 7: 267
    • 20b Sherwood J, Clark JH, Fairlamb IJ. S, Slattery JM. Green Chem. 2019; 21: 2164
  • 21 Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Tahir MN, Siddiqui MR. H. Dalton Trans. 2014; 43: 9026
  • 22 Xuan S, Jiang W, Gong X. Dalton Trans. 2011; 40: 7827
  • 23 Mekkaoui AA, Jennane S, Aberkouks A, Boualy B, Mehdi A, Ait Ali M, El Firdoussi L, El Houssame S. Appl. Organomet. Chem. 2019; 33: e5117
  • 24 Sore HF, Boehner CM, MacDonald SJ. F, Norton D, Fox DJ, Spring DR. Org. Biomol. Chem. 2009; 7: 1068
  • 25 Okita T, Asahara KK, Muto K, Yamaguchi J. Org. Lett. 2020; 22: 3205
  • 26 Ghasemzadeh MS, Akhlaghinia B. Aust. J. Chem. 2019; 72: 674
  • 27 Ren G, Cui X, Yang E, Yang F, Wu Y. Tetrahedron 2010; 66: 4022
  • 28 Shao-Hsien H. Molecules 2010; 15: 315
  • 29 Wei Y.-L, Li Y, Chen Y.-Q, Dong Y, Yao J.-J, Han X.-Y, Dong Y.-B. Inorg. Chem. 2018; 57: 4379
  • 30 Balinge KR, Bhagat PR. Inorg. Chim. Acta 2019; 495: 119017