Synthesis 2021; 53(02): 309-317
DOI: 10.1055/s-0040-1707313
feature

Aminocatalytic Synthesis of Uracil Derivatives Bearing a Bicyclo[2.2.2]octane Scaffold via a Doubly Cycloadditive Reaction Cascade

Maciej Saktura
,
Sebastian Frankowski
,
Bartłomiej Joachim
,
This project was realized within the Opus programme (grant number: 2016/23/B/ST5/01927) from the National Science Centre, Poland.


Dedicated to Professor Grzegorz Mlostoń on the occasion of his 70th birthday

Abstract

Aminocatalytic synthesis of highly enantiomerically enriched uracil derivatives bearing a bicyclo[2.2.2]octane scaffold is described. The developed strategy utilizes 1,3,6-trimethyl-5-formyluracil and α,β-unsaturated aldehydes as starting materials and has been realized employing various aminocatalytic activation strategies operating in a synergistic manner. The reaction cascade can be described as doubly cycloadditive as it consists of two consecutive Diels–Alder cycloadditions allowing for a facile construction of the bicyclo[2.2.2]octane scaffold. Notably, both steps proceed with dearomatization of the partially aromatic uracil moiety. Excellent stereoselectivity of the reaction cascade is ensured by the use of 2-(diphenylmethyl)pyrrolidine as aminocatalyst.

Supporting Information



Publication History

Received: 06 August 2020

Accepted after revision: 02 September 2020

Article published online:
22 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Büchi G, Erickson RE, Wakabayashi N. J. Am. Chem. Soc. 1961; 83: 927
    • 1b Wolff G, Ourisson G. Tetrahedron 1969; 25: 4903
    • 1c Terhune SJ, Hogg JW, Lawrence BM. Tetrahedron Lett. 1973; 4705
    • 1d Dunn AW, Johnstone RA. W, Sklarz B. J. Chem. Soc., Chem. Commun. 1976; 270a
    • 1e Dunn AW, Johnstone RA. W, Sklarz B, Lessinger L, King TJ. J. Chem. Soc., Chem. Commun. 1978; 533
    • 1f Kobayashi J, Ueno S, Morita H. J. Org. Chem. 2002; 67: 6546
    • 1g Morita H, Ishioka N, Takatsu H, Iizuka T, Kobayashi J. J. Nat. Prod. 2006; 69: 418
    • 1h Hao X, Shen Y, Li L, He H. Curr. Med. Chem. 2003; 10: 2253
    • 1i Li S-H, Wang J, Niu X.-M, Shen J.-H, Zhang H.-J, Sun H.-D, Li M.-L, Tian Q.-E, Lu Y, Cao P, Zheng Q.-T. Org. Lett. 2004; 6: 4327
    • 1j Rakotonandrasana OL, Raharinjato FH, Rajaonarivelo M, Dumontet V, Martin M.-T, Bignon J, Rasoanaivo P. J. Nat. Prod. 2010; 73: 1730
    • 1k Moustafa GA. I, Nojima S, Yamano Y, Aono A, Arai M, Mitarai S, Tanakaa T, Yoshimitsu T. Med. Chem. Commun. 2013; 4: 720
    • 2a Deutsch HM, Gelbaum LT, McLaughlin M, Fleischmann TJ, Earnhart LL, Haugwitz RD, Zalkow LH. J. Med. Chem. 1986; 29: 2164
    • 2b Hasinoff BB, Creighton AM, Kozlowska H, Thampatty P, Allan WP, Yalowich JC. Mol. Pharmacol. 1997; 52: 839
    • 2c Cao S.-G, Sng VH. L, Wu X.-H, Sim K.-Y, Tan BH. K, Pereira JT, Goh SH. Tetrahedron 1998; 54: 10915
    • 2d Zhou H.-B, Collins ML, Gunther JR, Comninos JS, Katzenellenbogen JA. Bioorg. Med. Chem. Lett. 2007; 17: 4118
    • 2e Martens E, Demain AL. J. Antibiot. 2011; 64: 705
    • 2f do Vale AE, David JM, dos Santos EO, David JP, de Silva LC. R. C, Bahia MV, Brandão HN. Phytochemistry 2012; 76: 158
    • 2g Zhu G, Wadavrao SB, Liu B. Chem. Rec. 2017; 17: 584
    • 2h Drummond G. J., Grant P. S., Brimble M. A.; Nat. Prod. Rep; 2020, in press; DOI: 10.1039/d0np00039f
    • 3a Evdokimov NM, Van Slambrouck S, Heffeter P, Tu L, Le Calve B, Lamoral-Theys D, Hooten CJ, Uglinskii PY, Rogelj S, Kiss R, Steelant WF. A, Berger W, Yang JJ, Bologa CG, Kornienko A, Magedov IV. J. Med. Chem. 2011; 54: 2012
    • 3b Brulikova L, Hlavac J. Beilstein J. Org. Chem. 2011; 7: 678
    • 3c Pałasz A, Cież D. Eur. J. Med. Chem. 2015; 97: 582
    • 3d Turkoglu EA, Senturk M, Supuran CT, Ekinci D. J. Enzyme Inhib. Med. Chem. 2017; 32: 74
    • 3e Cavdar H, Senturk M, Guney M, Durdagi S, Kayik G, Supuran CT, Ekinci D. J. Enzyme Inhib. Med. Chem. 2019; 34: 429
    • 3f Sanduja M, Gupta J, Virmani T. J. Appl. Pharm. Sci. 2020; 10: 129
    • 4a Jacobsen EN, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis . Springer; Berlin: 1999
    • 4b Mikami K, Lautens M. New Frontiers in Asymmetric Catalysis . Wiley-Interscience; New Jersey: 2007

      For selected reviews on organocatalysis, see:
    • 5a Jiang L, Chen Y.-C. Catal. Sci. Technol. 2011; 1: 354
    • 5b Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 5c Quigley C, Rodríguez-Docampo Z, Connon SJ. Chem. Commun. 2012; 48: 1443
    • 5d Tsakos M, Kokotos CG. Tetrahedron 2013; 69: 10199
    • 5e Dzięgielewski M, Pięta J, Kamińska E, Albrecht Ł. Eur. J. Org. Chem. 2015; 677
    • 5f Krawczyk H, Dzięgielewski M, Deredas D, Albrecht A, Albrecht Ł. Chem. Eur. J. 2015; 21: 10268
    • 5g Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 5h Koutoulogenis G, Kaplaneris N, Kokotos CG. Beilstein J. Org. Chem. 2016; 12: 462
    • 5i Teng B, Lim WC, Tan C.-H. Synlett 2017; 28: 1272
    • 5j Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 5k Frankowski S, Romaniszyn M, Skrzyńska A, Albrecht Ł. Chem. Eur. J. 2020; 26: 2120

      For selected reviews on vinylogy, see:
    • 6a Curti C, Battistini L, Sartori A, Zanardi F. Chem. Rev. 2020; 120: 2448
    • 6b Choudhury AR, Mukherjee S. Chem. Soc. Rev. 2020; 49: 6755
    • 6c Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888

    • For selected examples, see:
    • 6d Dell’Amico L, Albrecht Ł, Naicker T, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 8063
    • 6e Tian X, Melchiorre P. Angew. Chem. Int. Ed. 2013; 52: 5360
    • 6f Zhu B, Zhang W, Lee R, Han Z, Yang W, Tan D, Huang KW, Jiang Z. Angew. Chem. Int. Ed. 2013; 52: 6666
    • 6g Dell’Amico L, Rassu G, Zambrano V, Sartori A, Curti C, Battistini L, Pelosi G, Casiraghi G, Zanardi F. J. Am. Chem. Soc. 2014; 136: 11107
    • 6h Li X, Lu M, Dong Y, Wu W, Qian Q, Ye J, Dixon DJ. Nat. Commun. 2014; 5: 4479
    • 6i Zhang Y, Wei B, Lin H, Cui W, Zeng X, Fan X. Adv. Synth. Catal. 2015; 357: 1299
    • 6j Gu X, Guo T, Dai Y, Franchino A, Fei J, Zou C, Dixon DJ, Ye J. Angew. Chem. Int. Ed. 2015; 54: 10249
    • 6k Nielsen AJ, Jenkins HA, McNulty J. Chem. Eur. J. 2016; 22: 9111
    • 6l Albrecht A, Bojanowski J. Adv. Synth. Catal. 2017; 359: 2907
    • 6m Zhou Z, Wang Z.-X, Zhou Y.-C, Xiao W, Ouyang Q, Du W, Chen Y.-C. Nat. Chem. 2017; 9: 590
    • 6n Frias M, Más-Balleste R, Arias S, Alvarado C, Alemán J. J. Am. Chem. Soc. 2017; 139: 672
    • 6o Skrzyńska A, Romaniszyn M, Pomikło D, Albrecht Ł. J. Org. Chem. 2018; 83: 5019
    • 6p Frankowski S, Skrzyńska A, Sieroń L, Albrecht Ł. Adv. Synth. Catal. 2020; 362: 2658

      For reviews, see:
    • 7a Dell’Amico L., Vega-Penaloza A., Mateos J., Companyo X., Escudero-Casao M.; Angew. Chem. Int. Ed.; 2020; 59: in press; DOI: 10.1002/anie.202006416.
    • 7b Sinibaldi A, Nori V, Baschieri A, Fini F, Arcadi A, Carlone A. Catalysts 2019; 9: 928
    • 7c Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
    • 7d Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 7e Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 8a Li H, Yin L. Tetrahedron Lett. 2018; 59: 4121
    • 8b Frías M, Cieślik W, Fraile A, Rosado-Abón A, Garrido-Castro AF, Yuste F, Alemán J. Chem. Eur. J. 2018; 24: 10906
    • 8c Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888
    • 8d Schneider C, Abels F. Org. Biomol. Chem. 2014; 12: 3531
    • 9a Pawar T. J., Mitkari S. B., Peña-Cabrera E., Gómez C. V., Cruz D. C.; Eur. J. Org. Chem.; 2020, in press; DOI: 10.1002/ejoc.202000570
    • 9b Marcos V, Alemán J. Chem. Soc. Rev. 2016; 45: 6812
    • 9c Hepburn HB, Dell’Amico L, Melchiorre P. Chem. Rec. 2016; 16: 1787
    • 9d Vicario JL. Synlett 2016; 27: 1006
    • 9e Jiang H, Albrecht Ł, Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 9f Jurberg ID, Chatterjee I, Tannert R, Melchiorre P. Chem. Commun. 2013; 49: 4869
    • 10a Xiao B.-X, Gao X.-Y, Du W, Chen Y.-C. Chem. Eur. J. 2019; 25: 1607
    • 10b Przydacz A, Skrzyńska A, Albrecht Ł. Angew. Chem. Int. Ed. 2019; 58: 63

    • For our contributions, see:
    • 10c Skrzyńska A, Przydacz A, Albrecht Ł. Org. Lett. 2015; 17: 5682
    • 10d Dyguda M, Przydacz A, Krzemińska A, Albrecht Ł. Org. Biomol. Chem. 2019; 17: 6025
    • 10e Gao XY, Yan RJ, Xiao BX, Du W, Albrecht Ł, Chen YC. Org. Lett. 2019; 21: 9628
    • 10f Przydacz A, Dyguda M, Topolska A, Skrzyńska A, Xu C.-J, Chen Y.-C, Albrecht Ł. Org. Biomol. Chem. 2020; 18: 5816
    • 10g Xu C.-J, Du W, Albrecht Ł, Chen Y.-C. Synthesis 2020; 52: 2650
  • 11 Saktura M, Grzelak P, Dybowska J, Albrecht Ł. Org. Lett. 2020; 22: 1813
  • 12 During the preparation of this manuscript, the following paper appeared in the literature: Curti C., Rassu G., Lombardo M., Zambrano V., Pinna L., Battistini L., Sartori A., Pelosi G., Zanardi F.; Angew. Chem. Int. Ed.; 2020, in press; DOI: 10.1002/anie.202007509

    • For selected examples, see:
    • 13a Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 13b Wilson RM, Jen WS, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 11616
    • 13c Hong B.-C, Wu M.-F, Tseng H.-C, Liao J.-H. Org. Lett. 2006; 8: 2217
    • 13d Hong B.-C, Wu M.-F, Tseng H.-C, Huang G.-F, Su C.-F, Liao J.-H. J. Org. Chem. 2007; 72: 8459
    • 13e Bench BJ, Liu C, Evett CR, Watanabe CM. H. J. Org. Chem. 2006; 71: 9458
    • 13f Hong B.-C, Tseng H.-C, Chen S.-H. Tetrahedron 2007; 63: 2840
    • 13g de Figueiredo RM, Fröhlich R, Christmann M. Angew. Chem. Int. Ed. 2008; 47: 1450
    • 13h Brindani N, Rassu G, Dell’Amico L, Zambrano V, Pinna L, Curti C, Sartori A, Battistini L, Casiraghi G, Pelosi G, Greco D, Zanardi F. Angew. Chem. Int. Ed. 2015; 54: 7386
    • 13i Rassu G, Curti C, Zambrano V, Pinna L, Brindani N, Pelosi G, Zanardi F. Chem. Eur. J. 2016; 22: 12637
    • 14a Daubresse N, Francesch C, Rolando C. Tetrahedron 1998; 54: 10761
    • 14b Egg H, Volgger I. Synthesis 1982; 1071