Skip to main content
Log in

The trigonometric \(E_8\) R-matrix

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

An expression for the R-matrix associated with \({\mathcal {U}}_q({\widehat{\mathfrak e_8}})\) in its 249-dimensional representation is given using the diagrammatic calculus of \({\mathcal {U}}_q({\mathfrak {e}_8})\) invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that these identities do depend on the choice of normalization of B and T, which is determined by imposing that it agrees with the standard \({\mathfrak {e}_8}\) convention at \(q=1\), that it be the simplest possible (entries are coprime polynomials) and that constants occurring in the identities be palindromic in q (which fixes the remaining freedom of multiplying by a power of q).

  2. Note in particular that the “multiplicity-free” property that is crucial in e.g. [5] fails here.

  3. Requiring both unitarity and crossing relations without a prefactor would take us beyond the realm of rational functions, and we do not pursue this here.

References

  1. Bazhanov, V.: Trigonometric solutions of triangle equations and classical Lie algebras. Phys. Lett. B 159(4), 321–324 (1985). https://doi.org/10.1016/0370-2693(85)90259-X

    Article  ADS  MathSciNet  Google Scholar 

  2. Bazhanov, V., Nienhuis, B., Warnaar, O.: Lattice Ising model in a field: \(E_8\) scattering theory, Phys. Lett. B, 198–206 (1994) arXiv:hep-th/9312169

  3. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  4. Cvitanović, P.: Group Theory: Birdtracks, Lie’s, and Exceptional Groups. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  5. Delius, G., Gould, M., Zhang, Y.-Z.: On the construction of trigonometric solutions of the Yang–Baxter equation. Nucl. Phys. B 432(1), 377–403 (1994). https://doi.org/10.1016/0550-3213(94)90607-6. arXiv:hep-th/9405030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Drinfeld, V.: Quantum groups. J. Sov. Math. 41, 898–915 (1988). [Zap. Nauchn. Semin. LOMI 155 (1986) 18-49]

    Article  Google Scholar 

  7. Izergin, A., Korepin, V.: The inverse scattering method approach to the quantum Shabat–Mikhaĭlov model, Comm. Math. Phys. 79(3), 303–316 (1981) http://projecteuclid.org/euclid.cmp/1103909051

  8. Jimbo, M.: A \(q\)-difference analogue of \(U({\mathfrak{g}})\) and the Yang–Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985). https://doi.org/10.1007/BF00704588

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jimbo, M.: Quantum \(R\) matrix for the generalized Toda system. Commun. Math. Phys. 102(4), 537–547 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jimbo, M.: Introduction to the Yang–Baxter equation. Int. J. Mod. Phys. A 4(15), 3759–3777 (1989). https://doi.org/10.1142/S0217751X89001503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kassel, C.: Quantum Groups, Graduate Texts in Mathematics, vol. 155. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-0783-2

    Book  Google Scholar 

  12. Koepsell, K., Nicolai, H., Samtleben, H.: On the Yangian \({\cal{Y}}(\mathfrak{e} _8)\) quantum symmetry of maximal supergravity in two dimensions. J. High Energy Phys. 1999(04), 023–023 (1999). https://doi.org/10.1088/1126-6708/1999/04/023. arXiv:hep-th/9903111

    Article  Google Scholar 

  13. Kulish, P., Reshetikhin, N., Sklyanin, E.: Yang–Baxter equations and representation theory, I. Lett. Math. Phys. 5(5), 393–403 (1981). https://doi.org/10.1007/BF02285311

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kuniba, A.: Quantum \(R\) matrix for \(G_2\) and a solvable 175-vertex model. J. Phys. A Math. Gen. 23(8), 1349–1362 (1990). https://doi.org/10.1088/0305-4470/23/8/011

    Article  ADS  MATH  Google Scholar 

  15. Knutson, A., Zinn-Justin, P.: Schubert puzzles and integrability I: invariant trilinear forms (2017). arXiv:1706.10019

  16. Knutson, A., Zinn-Justin, P.: Schubert puzzles and integrability II: motivic Segre classes (2020)

  17. Ma, Z.-Q.: The spectrum-dependent solutions to the Yang-Baxter equation for quantum \(E_6\) and \(E_7\). J. Phys. A Math. Gen. 23(23), 5513–5522 (1990). https://doi.org/10.1088/0305-4470/23/23/023

    Article  ADS  MATH  Google Scholar 

  18. Mangazeev, V.: On the Yang-Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014). https://doi.org/10.1016/j.nuclphysb.2014.02.019. arXiv:1401.6494

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zamolodchikov, A.: Integrals of motion and \(S\)-matrix of the (scaled) \(T = T_c\) Ising model with magnetic field. Int. J. Mod. Phys. A 4(16), 4235–4248 (1989). https://doi.org/10.1142/S0217751X8900176X

    Article  ADS  Google Scholar 

  20. Zamolodchikov, A., Fateev, V.: Model factorized \(S\) matrix and an integrable Heisenberg chain with spin 1. Sov. J. Nucl. Phys. 32, 298–303 (1980). [Yad. Fiz.32,581(1980)] (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Zinn-Justin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PZJ was supported by ARC Grants FT150100232 and DP180100860. He would like to thank A. Kuniba for useful discussions and J. Lamers for comments on the manuscript.

Appendices

Appendix A Some product rules

Appendix B The main formula

Appendix C Rational limit

The rational R-matrix is obtained from the trigonometric one in the correlated limit \(q,z\rightarrow 1\):

$$\begin{aligned} q=e^{\epsilon \hbar /2} \qquad z=e^{\epsilon x} \qquad \epsilon \rightarrow 0 \end{aligned}$$

Representation theoretically, it corresponds to the limit from the quantized loop algebra \({\mathcal {U}}_q({\mathfrak {e}_8}[z^\pm ])\) (i.e., the quotient of \({\mathcal {U}}_q({\widehat{\mathfrak e_8}})\) by \(\prod _{i=0}^8 k_i^{n_i}=1\)) to the Yangian \(\mathcal Y({\mathfrak {e}_8})\cong {\mathcal {U}}_q({\mathfrak {e}_8}[z])\). In this Appendix, we show briefly how to recover the results of [12].

The main simplification in the diagrammatic calculus (see the related discussion at the start of Sect. 3.3) is that undercrossings and overcrossings become indistinguishable:

and both become equal to the naive permutation of tensors of \(V\otimes V\). The reader is invited to write the simplified relations that diagrams satisfy in this limit; we only provide one example:

The expression of the R-matrix in Appendix B becomes in the rational limit:

The alternative basis of Sect. 3.3 no longer makes sense because and are degenerate; we can however use an intermediate basis, in which the R-matrix becomes

the other terms (involving empty vertices) remaining the same.

It is not hard to see that the latter result coincides with that of [12] (see the equation between (3.9) and (3.10)), being careful that the expression there is \(R(w)=P\check{R}_{\text {rat}}(x=-w)\) where P is permutation of factors, on condition that the following normalizing factor is used:

$$\begin{aligned} f(w)=\frac{w(w-5\hbar )(w-9\hbar )}{(w-\hbar )(w-6\hbar )(w-10\hbar )} \end{aligned}$$

with the substitution \(i\hbar \rightarrow \hbar \) and with the free parameter \(\alpha \) (which is related to our parameter \(\kappa \)) given the value

$$\begin{aligned} \alpha =\frac{1}{2\sqrt{15}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinn-Justin, P. The trigonometric \(E_8\) R-matrix. Lett Math Phys 110, 3279–3305 (2020). https://doi.org/10.1007/s11005-020-01330-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01330-9

Keywords

Mathematics Subject Classification

Navigation