Skip to main content
Log in

Effects of heat sink structure on heat transfer performance cooled by semiconductor and nanofluids

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

On account of the low heat dissipation problem of common cooling systems, an experimental system with enhanced structures was set to improve the heat transfer of heat sink cooled by semiconductor and TiO2-water nano-fluids. The influences of structures (smooth surface, metal foam with PPI=30, cylindrical bulge (height: H=2 mm, staggered arrangement), cylindrical groove (depth: D=2 mm, staggered arrangement)), nanoparticle mass fractions (ω=0.0–0.5 wt%), input power of the semiconductor (P=2 W, 4 W, 6 W), and Reynolds numbers (Re=414−1,119) on the flow and heat transfer properties of TiO2-water nanofluids were studied. The compositive thermal and hydraulic properties of the enhanced technologies were analyzed by thermal efficiency. Results indicated that the combination of semiconductor and metal foam shows the most excellent performance compared with other combinations and it can be enhanced by 48.1% at best. Nanofluids with ω=0.4 wt% display the best cooling capacity instead of the highest concentration. The cooling effect shows an increasing trend with the input power of the semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

area of the copper [m2]

cp :

specific heat of nanofluids [J·kg−1·K−1]

D:

hydraulic diameter [m]

D :

depth of cylindrical groove [m]

f:

frictional resistance coefficient

h:

convection heat transfer coefficient [W·m−2·K−1]

l:

length [m]

L:

wetted perimeter [m]

Nu:

Nusselt number

Δp/Δl :

pressure drop per unit length [Pa/m]

PPI:

pores per inch

Q:

heat absorption of nanofluids [W]

q:

mass flow rate [kg/s]

Re:

Reynolds number

T:

temperatures [K]

u:

velocity of nanofluids [m/s]

ρ :

density [kg/m3]

φ :

volume fraction [%]

ω :

mass fraction [%]

δ :

thickness of copper [m]

λ :

thermal conductivity [W·m−1·K−1]

μ :

dynamic viscosity [Pa·s]

η :

compositive assessment exponent

bf:

base fluid

nf:

nanofluids

np:

nanoparticle

w:

wall

in:

inlet

out:

outlet

References

  1. M. Chen, Y. He, J. Zhu and D. Wen, Appl. Energy, 181, 65 (2016).

    CAS  Google Scholar 

  2. M. Chen, Y. He, X. Wang and Y. Hu, Appl. Energy, 211, 735 (2018).

    CAS  Google Scholar 

  3. Y. Xuan and Q. Li, Int. J. Heat Fluid Flow, 21(1), 58 (2000).

    CAS  Google Scholar 

  4. X. Fang, Y. Xuan and Q. Li, Appl. Phys. Lett., 95(20), 203108 (2009).

    Google Scholar 

  5. H. Li, Y. He, C. Wang, X. Wang and Y. Hu, Appl. Energy, 236, 117 (2019).

    CAS  Google Scholar 

  6. Y. Hu, Y. He, Z. Zhang and D. Wen, Sol. Energy Mat. Sol. Cells, 192, 94 (2019).

    CAS  Google Scholar 

  7. V. Nikkhah, M. M. Sarafraz and F. Hormozi, Chem. Biochem. Eng. Q, 29(3), 405 (2015).

    CAS  Google Scholar 

  8. A. Arya, M. M. Sarafraz, S. Shahmiri, S. A. Madani, V. Nikkhah and S. M. Nakhjavani, Heat. Mass Transf., 54(4), 985 (2018).

    CAS  Google Scholar 

  9. A. Asadi, M. Asadi, A. Rezaniakolaei, L. Rosendahl, M. Afrand and S. Wongwises, Int. J. Heat Mass Transf., 117, 474 (2018).

    CAS  Google Scholar 

  10. Z. Li, A. Shahsavar, A. A. Alrashed and P. Talebizadehsardari, Appl. Therm. Eng., 167, 114777 (2020).

    CAS  Google Scholar 

  11. R. Zhang, S. Aghakhani, A. H. Pordanjani, S. M. Vahedi, A. Shahsavar and M. Afrand, Eur. Phys. J Plus., 135(2), 1 (2020).

    Google Scholar 

  12. M. Baratpour, A. Karimipour, M. Afrand and S. Wongwises, Int. Commun. Heat Mass Transf., 74, 108 (2016).

    CAS  Google Scholar 

  13. S. Atashrouz, M. Mozaffarian and G. Pazuki, Korean J. Chem. Eng., 33(9), 2522 (2016).

    CAS  Google Scholar 

  14. A. A. Alrashed, A. Karimipour, S. A. Bagherzadeh, M. R. Safaei and M. Afrand, Int. J. Heat Mass Transf., 127, 925 (2018).

    CAS  Google Scholar 

  15. M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani and H. Teimouri, Phys. E Syst. Nanos., 85, 90 (2017).

    CAS  Google Scholar 

  16. Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Comput. Method. Appl. Mech. Eng., 338, 618 (2020).

    Google Scholar 

  17. I. Kim, H. Sim, H. Hong, D. Kim, W. Lee and D. Lee, Korean J. Chem. Eng., 36(6), 1004 (2019).

    CAS  Google Scholar 

  18. A. Komeilibirjandi, A. H. Raffiee, A. Maleki, M. A. Nazari and M. S. Shadloo, J. Therm. Anal. Calorim., 139(4), 2679 (2020).

    CAS  Google Scholar 

  19. M. Hojjat, S. G. Etemad and R. Bagheri, Korean J. Chem. Eng., 27(5), 1391 (2010).

    CAS  Google Scholar 

  20. B. Chun, H. U. Kang and S. H. Kim, Korean J. Chem. Eng., 25(5), 966 (2008).

    CAS  Google Scholar 

  21. H. I. Mohammed, P. T. Sardari and D. Giddings, Int. J. Therm. Sci., 146, 106099 (2019).

    CAS  Google Scholar 

  22. L. Yang, K. Du and Z. Zhang, Int. J. Mech. Sci., 168, 105310 (2020).

    Google Scholar 

  23. H. Bazdar, D. Toghraie, F. Pourfattah, O. A. Akbari, H. M. Nguyen and A. Asadi, J. Therm. Anal. Calorim., 139(3), 2365 (2020).

    CAS  Google Scholar 

  24. A. Shahsavar, P. T. Sardari and D. Toghraie, Int. J. Numer. Meth. Heat Fluid Flow, 29(3), 915 (2019).

    Google Scholar 

  25. M. Izadi, R. Mohebbi, D. Karimi and M. A. Sheremet, Chem. Eng. Proc., 125, 56 (2018).

    CAS  Google Scholar 

  26. R. Mohebbi, M. Izadi and A. J. Chamkha, Phys. Fluids, 29(12), 122009 (2017).

    Google Scholar 

  27. S. A. Mehryan, M. Izadi, A. J. Chamkha and M. A. Sheremet, J. Mol. Liq., 263, 510 (2018).

    CAS  Google Scholar 

  28. M. Izadi, G. Hoghoughi, R. Mohebbi and M. A. Sheremet, J. Mol. Liq., 261, 357 (2018).

    CAS  Google Scholar 

  29. M. Izadi, R. Mohebbi, A. A. Delouei and H. Sajjadi, Int. J. Mech. Sci., 151, 154 (2019).

    Google Scholar 

  30. M. Sheikholeslami, M. Jafaryar and Z. Li, Int. J. Heat Mass Transf., 124, 980 (2018).

    CAS  Google Scholar 

  31. M. Sheikholeslami, D. D. Ganji and M. Gorjibandpy, Appl. Therm. Eng., 100, 805 (2016).

    Google Scholar 

  32. M. Sheikholeslami, M. Jafaryar and Z. Li, J. Mol. Liq., 263, 489 (2018).

    CAS  Google Scholar 

  33. M. Jafaryar, M. Sheikholeslami, Z. Li and R. Moradi, J. Therm. Anal. Calorim., 135(1), 305 (2019).

    CAS  Google Scholar 

  34. Z. Li, M. Sheikholeslami, M. Ayani, M. Shamlooei, A. Shafee, M. Waly and I. Tlili, Physica A, 524, 540 (2019).

    Google Scholar 

  35. M. Nasiri, S. G. Etemad and R. Bagheri, Korean J. Chem. Eng., 28(12), 2230 (2011).

    CAS  Google Scholar 

  36. F. L. Yang, S. Zhou and C.X. Zhang, Korean J. Chem. Eng., 32(5), 816 (2015).

    CAS  Google Scholar 

  37. C. Qi, N. Zhao, X. Cui, T. Chen and J. Hu, Int. J. Heat Mass Transf., 123, 320 (2018).

    CAS  Google Scholar 

  38. N. Zhao, L. Guo, C. Qi, T. Chen and X. Cui, Energy Convers. Manage., 181, 235 (2019).

    CAS  Google Scholar 

  39. N. Zhao, C. Qi, T. Chen, J. Tang and X. Cui, Int. J. Heat Mass Transf., 135, 16 (2019).

    CAS  Google Scholar 

  40. M. Dehghan, M. S. Valipour and S. Saedodin, Energy Convers. Manage., 110, 22 (2016).

    Google Scholar 

  41. J. Chen, J. Han and D. Xu, Int. J. Hydrogen Energy, 44(23), 11546 (2019).

    CAS  Google Scholar 

  42. M. Shojaeian and S. M. Shojaee, Korean J. Chem. Eng., 30(4), 823 (2013).

    CAS  Google Scholar 

  43. P. T. Sardari, D. M. Grant, D. Giddings, G. S. Walker and M. Gillott, Energy Convers. Manage., 201, 112151 (2019).

    Google Scholar 

  44. P. T. Sardari, H. I. Mohammed, D. Giddings, G. S. Walker, M. Gillott and D. M. Grant, Energy, 189, 116108 (2019).

    Google Scholar 

  45. P. T. Sardari, D. Giddings, D.M. Grant, M. Gillott and G.S. Walker, Renew. Energy, 148, 987 (2020).

    CAS  Google Scholar 

  46. P. Naphon, S. Klangchart and S. Wongwises, Int. Commun. Heat Mass Transf., 36(8), 834 (2009).

    CAS  Google Scholar 

  47. P. Naphon, Energy Convers. Manage., 48, 2708 (2007).

    Google Scholar 

  48. M. P. Gonzalezaraoz, J. F. Sanchezramirez, J. L. Jimenezperez, E. Chigoanota, J. L. Herreraperez and J. G. Mendozaalvarez, Nat. Sci., 4(12), 1022 (2012).

    CAS  Google Scholar 

  49. S. M. S. Murshed, F. J. V. Santos and C. A. de Castro, J. Nano, 2(4), 261 (2013).

    CAS  Google Scholar 

  50. C. Qi, J. Hu, M. Liu, L. Guo and Z. Rao, Energy Convers. Manage., 153, 557 (2017).

    CAS  Google Scholar 

  51. B. C. Pak and Y. I. Cho, Exp. Heat Transf., 11(2), 151 (1998).

    CAS  Google Scholar 

  52. C. Qi, Y. Wan, C. Li, D. Han and Z. Rao, Int. J. Heat Mass Transf., 115(Part B), 1072 (2017).

    CAS  Google Scholar 

  53. S. Kline, Mech. Eng., 75, 3 (1953).

    Google Scholar 

  54. X. Wu and H. Wu, J. Chem. Ind. Eng. (in Chinese), 59(9), 2181 (2008).

    CAS  Google Scholar 

  55. C. Qi, L. Liang and Z. Rao, Int. J. Heat Mass Transf., 94, 316 (2016).

    CAS  Google Scholar 

  56. C. Qi, G. Wang, L. Yang, Y. Wan and Z. Rao, Int. J. Heat Mass Transf., 105, 664 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Chen, T., Tu, J. et al. Effects of heat sink structure on heat transfer performance cooled by semiconductor and nanofluids. Korean J. Chem. Eng. 37, 2104–2116 (2020). https://doi.org/10.1007/s11814-020-0634-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0634-y

Keywords

Navigation