Skip to main content
Log in

Random Walks on Comb-Type Subsets of \(\mathbb {Z}^2\)

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the path behavior of the simple symmetric walk on some comb-type subsets of \({{\mathbb {Z}}}^2\) which are obtained from \({{\mathbb {Z}}}^2\) by removing all horizontal edges belonging to certain sets of values on the y-axis. We obtain some strong approximation results and discuss their consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhincheev, V.E.: Anomalous diffusion and charge relaxation on comb model: exact solutions. Physica A 280, 304–314 (2000)

    Article  Google Scholar 

  2. Arkhincheev, V.E.: Random walks on the comb model and its generalizations. Chaos 17, 043102–7 (2007)

    Article  MathSciNet  Google Scholar 

  3. Arkhincheev, V.E.: Unified continuum description for sub-diffusion random walks on multi-dimensional comb model. Physica A 389, 1–6 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bass, F., Griffin, P.S.: The most visited site of Brownian motion and simple random walk. Z. Wahrsch. verv. Gebiete 70, 417–436 (1985)

    Article  MathSciNet  Google Scholar 

  5. Bertacchi, D.: Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11, 1184–1203 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bertacchi, D., Zucca, F.: Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75, 325–353 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bertoin, J.: Iterated Brownian motion and stable (1/4) subordinator. Statist. Probab. Lett. 27, 111–114 (1996)

    Article  MathSciNet  Google Scholar 

  8. Cassi, D., Regina, S.: Random walks on \(d\)-dimensional comb lattices. Modern Phys. Lett. B 6, 1397–1403 (1992)

    Article  MathSciNet  Google Scholar 

  9. Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Am. Math. Soc. 64, 205–233 (1948)

    Article  MathSciNet  Google Scholar 

  10. Csáki, E., Csörgő, M., Földes, A., Révész, P.: How big are the increments of the local time of a Wiener process? Ann. Probab. 11, 593–608 (1983)

    Article  MathSciNet  Google Scholar 

  11. Csáki, E., Csörgő, M., Földes, A., Révész, P.: Global Strassen-type theorems for iterated Brownian motions. Stoch. Process. Appl. 59, 321–341 (1995)

    Article  MathSciNet  Google Scholar 

  12. Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for a simple random walk on the 2-dimensional comb. Electron. J. Probab. 14, 2371–2390 (2009)

    Article  MathSciNet  Google Scholar 

  13. Csáki, E., Csörgő, M., Földes, A., Révész, P.: On the local time of random walk on the 2-dimensional comb. Stoch. Process. Appl. 121, 1290–1314 (2011)

    Article  MathSciNet  Google Scholar 

  14. Csáki, E., Csörgő, M., Földes, A., Révész, P.: Random walk on half-plane half-comb structure. Ann. Math. Inform. 39, 29–44 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for anisotropic random walks on \(Z^2\). Periodica Math. Hung. 67, 71–94 (2013)

    Article  Google Scholar 

  16. Csáki, E., Földes, A.: A note on the stability of the local time of the Wiener process. Stoch. Process. Appl. 25, 203–213 (1987)

    Article  MathSciNet  Google Scholar 

  17. Csáki, E., Földes, A., Révész, P.: Some results and problems for anisotropic random walk on the plane. Asymptotic Laws and Methods in Stochastics. In: A Volume in Honour of Miklós Csörgő Fields Institute Communication, vol. 76, pp. 55–76 (2015)

  18. Csáki, E., Grill, K.: On the large values of the Wiener process. Stoch. Process. Appl. 27, 43–56 (1988)

    Article  MathSciNet  Google Scholar 

  19. Csáki, E., Révész, P.: Strong invariance for local time. Z. Wahrsch. verw. Gebiete 50, 5–25 (1983)

    MathSciNet  MATH  Google Scholar 

  20. Csörgő, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probab. 7, 731–737 (1979)

    Article  MathSciNet  Google Scholar 

  21. Dean, D.D., Jansons, K.M.: Brownian excursions on combs. J. Stat. Phys. 70, 1313–1332 (1993)

    Article  MathSciNet  Google Scholar 

  22. Durhuus, B., Jonsson, T., Wheater, J.F.: Random walks on combs. J. Phys. A 39, 1009–1037 (2006)

    Article  MathSciNet  Google Scholar 

  23. Dvoretzky, A., Erdős, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium, pp. 353–367 (1951)

  24. Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung. 11, 137–162 (1960)

    Article  MathSciNet  Google Scholar 

  25. Heyde, C.C.: On the asymptotic behaviour of random walks on an anisotropic lattice. J. Stat. Phys. 27, 721–730 (1982)

    Article  Google Scholar 

  26. Heyde, C.C.: Asymptotics for two-dimensional anisotropic random walks. In: Stochastic Processes, pp. 125–130. Springer, New York (1993)

  27. Heyde, C.C., Westcott, M., Williams, E.R.: The asymptotic behavior of a random walk on a dual-medium lattice. J. Stat. Phys. 28, 375–380 (1982)

    Article  MathSciNet  Google Scholar 

  28. Hirsch, W.M.: A strong law for the maximum cumulative sum of independent random variables. Commun. Pure Appl. Math. 18, 109–127 (1965)

    Article  MathSciNet  Google Scholar 

  29. Iomin, A., Méndez, V., Horsthemke, W.: Fractional Dynamics in Comb-like Structures. World Scientific, Singapore (2018)

    Book  Google Scholar 

  30. Keilson, J., Wellner, J.A.: Oscillating Brownian motion. J. Appl. Probab. 15, 300–310 (1978)

    Article  MathSciNet  Google Scholar 

  31. Kesten, H.: An iterated logarithm law for the local time. Duke Math. J. 32, 447–456 (1965)

    Article  MathSciNet  Google Scholar 

  32. Klass, M.: Toward a universal law of the iterated logarithm. I. Z. Wahrsch. verw. Gebiete 36, 165–178 (1976)

    Article  MathSciNet  Google Scholar 

  33. Nane, E.: Laws of the iterated logarithm for a class of iterated processes. Stat. Probab. Lett. 79, 1744–1751 (2009)

    Article  MathSciNet  Google Scholar 

  34. Révész, P.: Local time and invariance. Lecture Notes in Math., vol. 861, pp. 128–145. Springer, New York (1981)

  35. Révész, P.: Random Walk in Random and Non-Random Environments, 3rd edn. World Scientific, Singapore (2013)

    Book  Google Scholar 

  36. Reynolds, A.M.: On anomalous transport on comb structures. Physica A 334, 39–45 (2004)

    Article  MathSciNet  Google Scholar 

  37. Seshadri, V., Lindenberg, K., Shuler, K.E.: Random walks on periodic and random lattices. II. Random walk properties via generating function techniques. J. Stat. Phys. 21, 517–548 (1979)

    Article  Google Scholar 

  38. Shuler, K.E.: Random walks on sparsely periodic and random lattices I. Physica A 95, 12–34 (1979)

    Article  Google Scholar 

  39. Silver, H., Shuler, K.E., Lindenberg, K.: Two-dimensional anisotropic random walks. In: Statistical Mechanics and Statistical Methods in Theory and Application (Proc. Sympos., Univ. Rochester, Rochester, N.Y., 1976), pp. 463–505. Plenum, New York (1977)

  40. Tóth, B.: No more than three favorite sites for simple random walk. Ann. Probab. 29, 484–503 (2001)

    Article  MathSciNet  Google Scholar 

  41. Weiss, G.H., Havlin, S.: Some properties of a random walk on a comb structure. Physica A 134, 474–482 (1986)

    Article  Google Scholar 

  42. Westcott, M.: Random walks on a lattice. J. Stat. Phys. 27, 75–82 (1982)

    Article  MathSciNet  Google Scholar 

  43. Zahran, Z.A.: 1/2-order fractional Fokker–Planck equation on comblike model. J. Stat. Phys. 109, 1005–1016 (2002)

    Article  MathSciNet  Google Scholar 

  44. Zahran, M.A., Abulwafa, E.M., Elwakil, S.A.: The fractional Fokker–Planck equation on comb-like model. Physica A 323, 237–248 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Miklós Csörgő and Pál Révész for their inspiration and careful reading of our manuscript that greatly improved our presentation. We also would like to thank our referee for his/her insightful suggestions which made our presentation much nicer.

Funding

Funding was provided by Research Foundation of The City University of New York (Grant No: 61520-0049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antónia Földes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Földes: Research supported by a PSC CUNY Grant, No. 61520-0049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csáki, E., Földes, A. Random Walks on Comb-Type Subsets of \(\mathbb {Z}^2\). J Theor Probab 33, 2233–2257 (2020). https://doi.org/10.1007/s10959-019-00938-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00938-5

Keywords

Mathematics Subject Classification (2010)

Navigation