Skip to main content
Log in

New Magnetic Fabric Data from Almora Crystalline Rocks around Rameshwar, Near North Almora Thrust

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

In this paper, Anisotropy of Magnetic Susceptibility (AMS) data from the rocks of Almora crystalline in the vicinity of Rameshwar is presented. The study integrates field, microstructural and Anisotropy of Magnetic Susceptibility (AMS) studies. Field foliation strike shows NW-SE orientation with moderate to high dip in rocks of Almora Crystalline, whereas near North Almora Thrust rocks of Almora Crystalline are steeply dipping and litho-units are intensely mylonitized due to NE-SW regional compression. The magnetic foliations are recorded to be parallel to the field foliation of the study area. Variation in orientation of magnetic lineation is inferred to imply superposed deformation in the study area. AMS study also reveals that the shape of susceptibility ellipsoid is oblate which is inferred to be due to compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, A., Agarwal, K. K., Bali, R., Prakash, C., Joshi, G., (2016) Back thrusting in Lesser Himalaya: Evidencefrom magnetic fabric studies in parts of Almora crystalline zone, Kumaun Lesser Himalaya, Jour. Earth Syst. Sci., v.125, pp.873–884.

    Article  Google Scholar 

  • Agarwal, K. K., Bali, R., Patil, S. K. and Ali, N. (2010) Anisotropy of magnetic susceptibility in the Almora Crystalline Zone Lesser Himalaya, India: A case study. Jour Asian. Earth Sci., v.3(1) pp.1–10.

    Google Scholar 

  • Bhattacharya, A.R. (1999) Deformation regimes across the Kumaun Himalaya: A study in strain pattern. Gondwana Res. Mem. (Japan), v.6, pp.81–90.

    Google Scholar 

  • Bhattacharya, A.R. (2004) Rotation of linear structures in shear regime. Geoinformatics, v.15, pp.1–20.

    Article  Google Scholar 

  • Borradaile, G.J. (1991) Correlation of Strain With Anisotropy of magnetic Susceptibility (AMS). Pure Appl. Geophys., v.135, pp.15–29.

    Article  Google Scholar 

  • Borradaile, G. J. and Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martin- Hernandez, F., Lüneburg, C. M., Aubourg, C., Jackson, M (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, v.238, Spec. Publ., pp.299–360.

  • Célérier, J., Harrison, T.M., Yin, A. and Webb, A.A.G. (2009) The Kumaun and Garwhal Lesser Himalaya, India. Part 1: Structure and stratigraphy. Geol. Soc. Amer. Bull., v.121, pp.1262–1280.

    Article  Google Scholar 

  • Ferre, E. C., Gebelin A., Till, J. L., Sassier, C., Burmeister, K. C. (2014) Deformation and magnetic fabrics in ductile shear zone: A review. Tectonophysics, v.629, pp.179–188.

    Article  Google Scholar 

  • Gansser, A. (1964) Geology of the Himalayas. Inter-Section Publishers, London, New York, Sydney, pp.289.

    Google Scholar 

  • Graham, J.W. (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bull. Geol. Soc. Amer., v.65, pp.1257–1258.

    Google Scholar 

  • Heim, A. and Gansser, A. (1939) Central Himalaya: Geological observations of the Swiss expedition 1936. Memoir of the Swiss Society of Natural Science, v.73, pp.245.

    Google Scholar 

  • Hodges, K.V. (2000) Tectonics of the Himalaya and Southern Tibet from two perspectives. Geol. Soc. Amer. Bull., v.112, pp.324–350.

    Article  Google Scholar 

  • Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37–82.

    Article  Google Scholar 

  • Jackson, M.J. and Tauxe L. (1991) Anisotropy of magnetic susceptibility and remanence and susceptibility-developments in the characterization of tectonic, sedimentary and igneous fabric. Rev. Geophys., v.29S, pp.371–6.

    Article  Google Scholar 

  • Jayangondaperumal, R. and Dubey, A.K. (2001) Superposed folding of blind thrust and formation of klippen: result of anisotropic magnetic susceptibility from the Lesser Himalaya. Jour. Asian Earth Sci., v.19, pp.713–725.

    Article  Google Scholar 

  • Jelinek, V. (1981) Characterization of the magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.

    Article  Google Scholar 

  • Joshi, L.M., Pant, P.D., Kotlia, B.S., Kothyari G.C., Luirei K. and Singh, A.K. (2016) Structural overview and morphotectonic evolution of a strike-slip fault in the zone of north almora thrust, Central Kumaun Himalaya, India. Jour. Geol. Res., v.2016, pp.1–16.

    Google Scholar 

  • Joshi, M. (1999) Evolution of the basal shear zone of the Almora Nappe, Kumaun Himalaya. Mem. Gondwana Res., v.6, pp.69–80.

    Google Scholar 

  • Joshi, M. and Tiwari, A.N., (2004) Quartz C-axes and metastable phases in the metamorphic rocks of Almora Nappe: evidence of pre-Himalayan signatures. Curr. Sci., v.87(7), pp.995–999.

    Google Scholar 

  • Joshi, M. and Tiwari, A. N. (2009) Structure events and metamorphic consequences in Almora Nappe, during Himalayan collision tectonics. Jour. Asian Earth Sci., v.34, pp.326–335.

    Article  Google Scholar 

  • Katiyar, V. (2014) Geological and Structural studies of Almora Crystalline and Garhwal Group near Rameshwar, District Pithoragarh, with special reference to the North Almora Thrust (Unpublished Ph.D. Thesis), Banaras Hindu University, Varanasi

    Google Scholar 

  • Kretz, R. (1983) Symbols of rock-forming minerals, Amer. Mineral., v.68, pp.277–279.

    Google Scholar 

  • Le Fort, P. (1975) Himalaya, the collided range: present knowledge of the continental arc. Amer. Jour. Sci., v.275A, pp.1–44.

    Google Scholar 

  • LeFort, P., (1996) Evolution of the Himalaya, in Yin, A., and Harrison, T.M., eds., The tectonic evolution of Asia: Cambridge University Press, pp.95–109.

  • Mamtani, M. A. and Greiling, R.O. (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt, (India) — inferences from the magnetic fabric. Jour. Struct. Geol., v.27, pp.2008–29.

    Article  Google Scholar 

  • Mamtani, M. A. and Sengupta, A. (2010) Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Magz., v.147, pp.910–918.

    Article  Google Scholar 

  • Mamtani, M. A. and Vishnu, C. S. (2012) Does AMS data from micaceous quartzite provide information about shape of the strain ellipsoid? Internat. Jour. Earth Sci., v.101, pp.693–703.

    Article  Google Scholar 

  • Mondal, T.K., (2018) Evolution of fabric in Chitradurga granite (South India)-A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and Vorticity analysis, Tectonophysics, v.723, pp.149–161.

    Article  Google Scholar 

  • Mukherji, A., Chaudhuri, A. K. & Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struct. Geol., v.26, pp. 2175–89.

    Article  Google Scholar 

  • Nakamura, N. and Nagahama, H. (1997) Anisotropy of magnetic susceptibility and plastic strain of rocks:A Finsler geometrical approach. Acta Geophysica Polonica, v.45, pp.333–54.

    Google Scholar 

  • Owens, W.H. and Bamford, D. (1976) Magnetic, seismic and other anisotropic properties of rock fabrics. Phil. Trans. Royal Soc. London, A283, pp.55–68.

    Google Scholar 

  • Pant, P.D., Chauhan, R., and Bhakuni, S.S. (2012) Development of Transverse Fault along North Almora Thrust, Kumaun Lesser Himalaya, India: A study Based on Field and Magnetic Fabrics, Jour. Geol. Soc. India, v.79, pp.429–448.

    Article  Google Scholar 

  • Rochette, P. (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Jour. Struct. Geol., v.9, pp.1015–20.

    Article  Google Scholar 

  • Sen, K., Dubey, A. K., Tripathi, K., and Pfänder, J. A., (2012) Composite mesoscopic and magnetic fabrics of the Paleo- Proterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: implications for ductile deformation and superposed folding of the Himalayan basement rocks. Jour. Geodynamics, v.61, pp.81–93.

    Article  Google Scholar 

  • Sen, K., Mukherjee, B.K., Collins, A.S., (2014) Interplay of deformation and magmatism in the 203 Pangong Transpressional Zone, Eastern Ladakh, India: Implications for remobilization of the trans204 Himalayan magmatic arc and initiation of the Karakoram Fault. Jour. Struct. Geol., v.62, pp.13–24.

    Article  Google Scholar 

  • Srivastava, P. and Mitra, G. (1996) Deformation mechanism and inverted thermal profile in the North Almora Thrust mylonite zone, Kumaon Lesser Himalaya, India; Jour. Struct. Geol., v.18, pp.27–39.

    Article  Google Scholar 

  • Tarling, D.H. and Hrouda, F. (1993) The magnetic anisotropy of Rocks. Chapman and Hall, London, pp.217.

    Google Scholar 

  • Tripathi, K., Sen, K. and Dubey, A.K. (2012) Modification of fabric in pre-Himalayan granitic rocks by post emplacement ductile deformation: insights from microstructures, AMS, and U-Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment Zone, Himachal High Himalaya. Inter. Jour. of Earth Sci, v.101, pp.761–72.

    Article  Google Scholar 

  • Valdiya, K.S. (1975) Lithology and age of the Tal Formation in Garhwal and implication on stratigraphic scheme of Krol belt in Kumaun Himalaya. Jour. Geol. Soc. India, v.16(2), pp. 119–134.

    Google Scholar 

  • Valdiya, K.S. (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology.

  • Valdiya, K.S. (1998) Dynamic Himalaya; University Press.

  • Zak, J., Verner, K. and Tycova, P. (2008) Multiple magmatic fabrics in plutons: an overlooked tool for exploring interaction between magmatic processes and regional deformation? Geol. Magz., v.145, pp.537–51.

    Google Scholar 

Download references

Acknowledgements

Financial support for the present work provided by UGC-RFSMS award no. F.4-3/2006 (BSR)/5-104/2007 (BSR) and UGC-PDFWM (award letter no. F.15-1/2017/PDFWM-2017/18/UTT-39465, SA-II) is gratefully acknowledged. The authors are thankful to anonymous reviewer for comments that helped to improve the manuscript. We thank Dr. Koushik Sen and Dr. T. K. Mondal for their valuable suggestions that helped revise the manuscript. The authors are grateful to The Director, IIG, Mumbai, for providing AMS facilities. We are also thankful to Dr. Manish A. Mamtani for his editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Katiyar.

Supplementary material for the article on

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, V., Patil, S.K. & Srivastava, H.B. New Magnetic Fabric Data from Almora Crystalline Rocks around Rameshwar, Near North Almora Thrust. J Geol Soc India 96, 349–355 (2020). https://doi.org/10.1007/s12594-020-1563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1563-4

Navigation