Skip to main content
Log in

Temperature change effect on torsional vibration of nanorods embedded in an elastic medium using Rayleigh–Ritz method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper studies torsional vibration of carbon nanotubes/nanorods embedded in an elastic medium under thermal stresses. Nonlocal theory is applied to the nanorod equations. The thermal stresses act in axial and other directions, and their amounts vary as temperature changes. The elastic medium is modeled as a rotational spring around the nanorod. Hamilton’s principle is used to obtain motion equation. Rayleigh–Ritz method is used to solve the differential equation of motion. Effect of nonlocal scale coefficient, low and high temperatures, elastic medium stiffness, and nanorod diameter and length is investigated. Influence of temperature on the frequencies depends on the values of stiffness of elastic medium, and nanotube diameter and length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

The MATLAB codes for generating the results are prepared and sent online.

References

  1. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16. https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Yakobson BI, Brabec C, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511. https://doi.org/10.1103/PhysRevLett.76.2511

    Article  Google Scholar 

  3. Lu JP (1997a) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297. https://doi.org/10.1103/PhysRevLett.79.1297

    Article  Google Scholar 

  4. Vodenitcharova T, Zhang L (2003) Effective wall thickness of a single-walled carbon nanotube. Phys Rev B 68:165401. https://doi.org/10.1103/PhysRevB.68.165401

    Article  Google Scholar 

  5. Wang C, Zhang Y, He X (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105401. https://doi.org/10.1088/0957-4484/18/10/105401

    Article  Google Scholar 

  6. Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659. https://doi.org/10.1088/0964-1726/15/2/050

    Article  Google Scholar 

  7. Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702. https://doi.org/10.1088/0957-4484/18/7/075702

    Article  Google Scholar 

  8. Yayli MÖ, Asa E (2019) Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics. Microsyst Technol. https://doi.org/10.1007/s00542-019-04512-1

    Article  Google Scholar 

  9. Murmu T, Adhikari S (2010) Nonlocal transverse vibration of double-nanobeam-systems. J Appl Phys 108:083514. https://doi.org/10.1063/1.3496627

    Article  Google Scholar 

  10. Azrar A, Azrar L, Aljinaidi AA (2016) Analytical and numerical modeling of higher order free vibration characteristics of single-walled carbon nanotubes. Mech Adv Mater Struct 23:1245–1262. https://doi.org/10.1080/15376494.2015.1068405

    Article  Google Scholar 

  11. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312. https://doi.org/10.1016/S0020-7225(02)00210-0

    Article  Google Scholar 

  12. Lim CW (2010a) Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator? Sci China Phys Mech Astron 53:712–724. https://doi.org/10.1007/s11433-010-0170-6

    Article  Google Scholar 

  13. Lim CW (2010b) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech 31:37–54. https://doi.org/10.1007/s10483-010-0105-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Forest S, Sab K (2012) Stress gradient continuum theory. Mech Res Commun 40:16–25. https://doi.org/10.1016/j.mechrescom.2011.12.002

    Article  Google Scholar 

  15. Polizzotto C (2014) Stress gradient versus strain gradient constitutive models within elasticity. Int J Solids Struct 51:1809–1818. https://doi.org/10.1016/j.ijsolstr.2014.01.021

    Article  Google Scholar 

  16. Polizzotto C (2015) A unifying variational framework for stress gradient and strain gradient elasticity theories. Eur J Mech A/Solids 49:430–440. https://doi.org/10.1016/j.euromechsol.2014.08.013

    Article  MathSciNet  MATH  Google Scholar 

  17. Polizzotto C (2016) Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models. Int J Solids Struct 80:405–419. https://doi.org/10.1016/j.ijsolstr.2015.09.015

    Article  Google Scholar 

  18. Mahmoud FF (2017) On the nonexistence of a feasible solution in the context of the differential form of Eringen’s constitutive model: a proposed iterative model based on a residual nonlocality formulation. Int J Appl Mech 9:1750094. https://doi.org/10.1142/S1758825117500946

    Article  Google Scholar 

  19. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307. https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  20. Reddy J, Pang S (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511. https://doi.org/10.1063/1.2833431

    Article  Google Scholar 

  21. Zhao D, Liu Y, Tang Y-g (2019) Effects of magnetic field on size sensitivity of nonlinear vibration of embedded nanobeams. Mech Adv Mater Struct 26:948–956. https://doi.org/10.1080/15376494.2018.1432783

    Article  Google Scholar 

  22. Zhao H-S, Zhang Y, Lie S-T (2018) Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects. Acta Mech Sin 34:676–688. https://doi.org/10.1007/s10409-018-0751-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Torabi K, Dastgerdi JN (2012) An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films 520:6595–6602. https://doi.org/10.1016/j.tsf.2012.06.063

    Article  Google Scholar 

  24. Soltanpour M, Ghadiri M, Yazdi A, Safi M (2017) Free transverse vibration analysis of size dependent Timoshenko FG cracked nanobeams resting on elastic medium. Microsyst Technol 23:1813–1830. https://doi.org/10.1007/s00542-016-2983-3

    Article  Google Scholar 

  25. Murmu T, Pradhan S (2009) Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput Mater Sci 46:854–859. https://doi.org/10.1016/j.commatsci.2009.04.019

    Article  Google Scholar 

  26. Li C (2017) Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mech Based Des Struct Mach 45:463–478. https://doi.org/10.1080/15397734.2016.1242079

    Article  Google Scholar 

  27. Ji C, Yao L, Li C (2019) Transverse vibration and wave propagation of functionally graded nanobeams with axial motion. J Vib Eng Technol. https://doi.org/10.1007/s42417-019-00130-3

    Article  Google Scholar 

  28. Zarepour M, Hosseini SA (2016) A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions. Smart Mater Struct 25:085005. https://doi.org/10.1088/0964-1726/25/8/085005

    Article  Google Scholar 

  29. Ghane M, Saidi AR, Bahaadini R (2020) Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory. Appl Math Model 80:65–83. https://doi.org/10.1016/j.apm.2019.11.034

    Article  MathSciNet  MATH  Google Scholar 

  30. Atanasov MS, Stojanović V (2020) Nonlocal forced vibrations of rotating cantilever nano-beams. Eur J Mech A/Solids 79:103850. https://doi.org/10.1016/j.euromechsol.2019.103850

    Article  MathSciNet  MATH  Google Scholar 

  31. Jena SK, Chakraverty S (2020) Vibration analysis of nonuniform single-walled carbon nanotube resting on winkler elastic foundation using DQM. Recent trends in wave mechanics and vibrations, pp 371–91. Springer Berlin Doi: https://doi.org/10.1007/978-981-15-0287-3_27

  32. Hosseini-Hashemi S, Nazemnezhad R, Rokni H (2015) Nonlocal nonlinear free vibration of nanobeams with surface effects. Eur J Mech A/Solids 52:44–53. https://doi.org/10.1016/j.euromechsol.2014.12.012

    Article  MathSciNet  MATH  Google Scholar 

  33. Ebrahimi F, Salari E, Hosseini SAH (2015) Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions. J Therm Stresses 38:1360–1386. https://doi.org/10.1080/01495739.2015.1073980

    Article  Google Scholar 

  34. Abdullah SS, Hosseini-Hashemi S, Hussein NA, Nazemnezhad R (2020a) Effect of temperature on vibration of cracked single-walled carbon nanotubes embedded in an elastic medium under different boundary conditions. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1759431

    Article  Google Scholar 

  35. Abdullah SS, Hosseini-Hashemi S, Hussein NA, Nazemnezhad R (2020b) Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium. J Therm Stresses. https://doi.org/10.1080/01495739.2020.1780175

    Article  Google Scholar 

  36. Nazemnezhad R, Mahoori R, Samadzadeh A (2019) Surface energy effect on nonlinear free axial vibration and internal resonances of nanoscale rods. Eur J Mech A/Solids 77:103784. https://doi.org/10.1016/j.euromechsol.2019.05.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Barretta R, Faghidian SA, Luciano R (2019) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struct 26:1307–1315. https://doi.org/10.1080/15376494.2018.1432806

    Article  Google Scholar 

  38. Nazemnezhad R, Kamali K (2016) Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal Rayleigh theory. Mod Mech Eng 16:19–28. https://journals.modares.ac.ir/article-15-9452-en.html

  39. Akbaş ŞD (2019) Axially forced vibration analysis of cracked a nanorod. J Comput Appl Mech 50:63–68. https://doi.org/10.22059/jcamech.2019.281285.392

    Article  Google Scholar 

  40. Lim CW, Li C, Yu J (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331:2798–2808. https://doi.org/10.1016/j.jsv.2012.01.016

    Article  Google Scholar 

  41. Nazemnezhad R (2018) Surface energy and elastic medium effects on torsional vibrational behavior of embedded nanorods. Int J Eng 31:495–503. https://doi.org/10.5829/ije.2018.31.03c.13

    Article  Google Scholar 

  42. Setoodeh A, Rezaei M, Shahri MZ (2016) Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory. Appl Math Mech 37:725–740. https://doi.org/10.1007/s10483-016-2085-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Murmu T, Adhikari S, Wang C (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory. Phys E 43:1276–1280. https://doi.org/10.1016/j.physe.2011.02.017

    Article  Google Scholar 

  44. Yayli MÖ, Kandemir SY, Çerçevik AE (2019) Torsional vibration of cracked carbon nanotubes with torsional restraints using Eringen’s nonlocal differential model. J Low Freq Noise Vib Active Control 38:70–87. https://doi.org/10.1177/1461348418813255

    Article  Google Scholar 

  45. Zarezadeh E, Hosseini V, Hadi A (2019) Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1642766

    Article  Google Scholar 

  46. Hussain M, Naeem MN, Taj M (2020) Effect of length and thickness variations on the vibration of SWCNTs based on Flügge’s shell model. Micro Nano Lett 15:1–6. https://doi.org/10.1049/mnl.2019.0309

    Article  Google Scholar 

  47. Numanoğlu HM, Civalek Ö (2019) On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. Int J Mech Sci 161:105076. https://doi.org/10.1016/j.ijmecsci.2019.105076

    Article  Google Scholar 

  48. Bao S, Cao J, Wang S (2019) Vibration analysis of nanorods by the Rayleigh-Ritz method and truncated Fourier series. Results Phys 12:327–334. https://doi.org/10.1016/j.rinp.2018.11.085

    Article  Google Scholar 

  49. Praveen G, Reddy J (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int J Solids Struct 35:4457–4476. https://doi.org/10.1016/S0020-7683(97)00253-9

    Article  MATH  Google Scholar 

  50. Lu JP (1997b) Elastic properties of single and multilayered nanotubes. J Phys Chem Solids 58:1649–1652. https://doi.org/10.1016/S0022-3697(97)00045-0

    Article  Google Scholar 

  51. Yao X, Han Q (2006) Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change. J Eng Mater Technol 128:419–427. https://doi.org/10.1115/1.2203102

    Article  Google Scholar 

  52. Mehta V, Kumar S (1994) Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. J Mater Sci 29:3658–3664. https://doi.org/10.1007/BF00357332

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iran University of Science and Technology and University of Salahaddin-Erbil for supporting this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nazemnezhad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Availability of data and material

Not applicable.

Additional information

Technical Editor: Marcelo Areias Trindade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, S.S., Hosseini-Hashemi, S., Hussein, N.A. et al. Temperature change effect on torsional vibration of nanorods embedded in an elastic medium using Rayleigh–Ritz method. J Braz. Soc. Mech. Sci. Eng. 42, 588 (2020). https://doi.org/10.1007/s40430-020-02664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02664-0

Keywords

Navigation