Skip to main content
Log in

A Novel Approach of Unsteady Adjoint Lattice Boltzmann Method Based on Circular Function Scheme

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new approach of combination of the LBM and adjoint method based on the circular function idea is developed for optimization of unsteady incompressible/compressible inviscid flow in 1D and 2D problems. The circular function distribution is used for capturing the compressibility effect in the flowfield and the continuous adjoint method allows designers to implement large number of design variables in actual optimization problems. The adjoint approach is successfully derived for the first time based on the compressible LBM with terminal conditions for estimation of the cost function gradient vector in 1D/2D flow inverse design problem. To validate the new derived flow solver with new lattice, firstly, accuracy of the flow simulation is shown for the inviscid compressible discontinuous flows with shock wave. Secondly, for validation of novel derived adjoint optimization algorithm, three optimization problems in form of the inverse design, including the smooth and shock wave inviscid compressible flowfields, are presented. Also, trend of optimization algorithm is studied in all cases. The results indicate that the presented numerical optimization approach gives desirable accuracy in 1D/2D inverse design of inviscid unsteady compressible flowfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Kadanoff, L.P., McNamara, G.R., Zanetti, G.: From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40(8), 4527 (1989)

    Article  Google Scholar 

  2. Hardy, J., Pomeau, Y., De Pazzis, O.: Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. J. Math. Phys. 14(12), 1746–1759 (1973)

    Article  MathSciNet  Google Scholar 

  3. Khan, M.H., Sharma, A., Agrawal, A.: Simulation of flow around a cube at moderate reynolds numbers using the lattice Boltzmann method. J. Fluids Eng. 142(1) (2020)

  4. Najafi, M.J., Naghavi, S.M., Toghraie, D.: Numerical simulation of flow in hydro turbines channel to improve its efficiency by using of Lattice Boltzmann Method. Phys. A520, 390–408 (2019)

    Article  MathSciNet  Google Scholar 

  5. He, X., Luo, L.S., Dembo, M.: Some progress in lattice Boltzmann method. Part I. Nonuniformmesh grids. J. Comput. Phys. 129(2), 357–363 (1996)

    Article  MathSciNet  Google Scholar 

  6. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56(14), 1505 (1986)

    Article  Google Scholar 

  7. Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171(1), 289–335 (2001)

    Article  MathSciNet  Google Scholar 

  8. Guangwu, Y., Yaosong, C., Shouxin, H.: Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 59(1), 454 (1999)

    Article  Google Scholar 

  9. Sun, C.: Lattice-Boltzmann models for high speed flows. Phys. Rev. E58(6), 7283 (1998)

    Article  Google Scholar 

  10. Sun, C., Hsu, A.T.: Three-dimensional lattice Boltzmann model for compressible flows. Phys. Rev. E 68(1), 016303 (2003)

    Article  MathSciNet  Google Scholar 

  11. He, Y.L., Liu, Q., Li, Q.: Three-dimensional finite-difference lattice Boltzmann model and its application to inviscid compressible flows with shock waves. Phys. A 392(20), 4884–4896 (2013)

    Article  MathSciNet  Google Scholar 

  12. Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75(3), 036706 (2007)

    Article  MathSciNet  Google Scholar 

  13. Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C18(04), 447–454 (2007)

    Article  MathSciNet  Google Scholar 

  14. Qu, K., Shu, C., Chew, Y.T.: Lattice Boltzmann and finite volume simulation of inviscid compressible flows with curved boundary. Adv. Appl. Math. Mech 2(5), 573–586 (2010)

    Article  MathSciNet  Google Scholar 

  15. Qu, K.: Development of lattice Boltzmann method for compressible flows. Ph.D., diss. NUS, Department of Mechanical Engineering, (2009)

  16. Jamson, A., Leoviriyakit, K.: In Chapter 1, Stanford University, Stanford CA, Department of Aeronautics and Astronautics

  17. Hu, R., Jameson, A., Wang, Q.: Adjoint-based aerodynamic optimization of supersonic biplane airfoils. J. Aircraft 49(3), 802–814 (2012)

    Article  Google Scholar 

  18. Nadarajah, S., Matthew M., Jameson, A.: Optimal control of unsteady flows using time accurate and non-linear frequency domain methods. In: 33rd AIAA Fluid Dynamics Conference and Exhibit (2003)

  19. Leoviriyakit, K.: Ph.D. Thesis, Stanford University (2005)

  20. Reuther, J. et al.: Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation. In: 34th Aerospace Sciences Meeting and Exhibit (1996)

  21. Farrokhfal, H., Pishevar, A.R.: Optimization of airfoils for minimum pitching moment and compressibility drag coefficients. J. Aerosp. Technol. Manag. 6(4), 395–406 (2014)

    Article  Google Scholar 

  22. Farrokhfal, H., Pishevar, A.R.: Aerodynamic shape optimization of hovering rotor blades using a coupled free wake–CFD and adjoint method. Aerosp. Sci. Technol. 28(1), 21–30 (2013)

    Article  Google Scholar 

  23. Leoviriyakit, K., Jameson, A.: Multipoint wing planform optimization via control theory. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005)

  24. Cheylan, I., Fritz, G., Ricot, D., Sagaut, P.: Shape optimization using the adjoint Lattice Boltzmann method for aerodynamic applications. AIAA J. 1–16 (2019)

  25. Li, X., Fang, L., Peng, Y.: Airfoil design optimization based on lattice Boltzmann method and adjoint approach. Appl. Math. Mech. 39(6), 891–904 (2018)

    Article  MathSciNet  Google Scholar 

  26. Tekitek, M.M., Bouzidi, M., Dubois, F., Lallemand, P.: Adjoint lattice Boltzmann equation for parameter identification. Comput. Fluids 35(8–9), 805–813 (2006)

    Article  Google Scholar 

  27. Pingen, G., Evgrafov, A., Maute, K.: Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput. Fluids 38(4), 910–923 (2009)

    Article  MathSciNet  Google Scholar 

  28. Noack, A., Walther, A.: Adjoint concepts for the optimal control of Burgers equation. Comput. Optim. Appl.36(1), 109–133 (2007)

    Article  MathSciNet  Google Scholar 

  29. Klemens, Fabian, et al.: Noise reduction of flow MRI measurements using a lattice Boltzmann based topology optimisation approach. Comput. Fluids 197, 104391 (2020)

    Article  MathSciNet  Google Scholar 

  30. Hekmat, M.H., Mirzaei, M.: A comparison of the continuous and discrete adjoint approach extended based on the standard lattice Boltzmann method in flow field inverse optimization problems. Acta Mech. 227(4), 1025–1050 (2016)

    Article  MathSciNet  Google Scholar 

  31. Hekmat, M.H., Mirzaei, M.: Extraction of macroscopic and microscopic adjoint concepts using a lattice Boltzmann method and discrete adjoint approach. Phys. Rev. E91(1), 013303 (2015)

    Article  MathSciNet  Google Scholar 

  32. Latafat, P., Patrinos, P.: Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl.68(1), 57–93 (2017)

    Article  MathSciNet  Google Scholar 

  33. Meng, J., Dongari, N., Reese, J.M., Zhang, Y.: Breakdown parameter for kinetic modeling of multiscale gas flows. Phys. Rev. E 89(6), 063305 (2014)

    Article  Google Scholar 

  34. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Kamali Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali Khouzani, H., Kamali Moghadam, R. A Novel Approach of Unsteady Adjoint Lattice Boltzmann Method Based on Circular Function Scheme. J Sci Comput 85, 38 (2020). https://doi.org/10.1007/s10915-020-01318-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01318-6

Keywords

Navigation