Skip to main content

Advertisement

Log in

PKCβ/NF-κB pathway in diabetic atrial remodeling

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)–induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose–induced NF-κB and extracellular signal–related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

NF-κB:

nuclear factor kappaB

TGF-β:

transforming growth factor-β

PKCβ:

protein kinase C-β

STZ:

streptozotocin

RBX:

ruboxistaurin

AF:

atrial fibrillation

DM:

diabetes mellitus

DAG:

diacylglycerol

LAD:

left atrial anteroposterior diameter

LVEDD:

left ventricular end-diastolic diameter

LVESD:

left ventricular end-systolic diameter

LVEF:

left ventricular ejection fraction

SBP:

systolic blood pressure

DBP:

diastolic blood pressure

MBP:

mean blood pressure

LVEDP:

left ventricular end-diastolic pressure

RA:

right atrium

LA:

left atrium

RV:

right ventricle

IACT:

interatrial conduction time

AVWCL:

Wenckebach cycle length of AV conduction

PCL:

pace cycle length

AERP:

atrial effective refractory period

AERPD:

atrial effective refractory period dispersion

FPG:

fasting plasma glucose

IKK:

IκB kinase

MAPK:

mitogen-activated protein kinase

NCX:

Na+-Ca2+ exchanger current

References

  1. Anderson P, McGill J, Tuttle K (2007) Protein kinase C beta inhibition: the promise for treatment of diabetic nephropathy. Curr Opin Nephrol Hypertens 16:397–402. https://doi.org/10.1097/MNH.0b013e3281ead025

    Article  CAS  PubMed  Google Scholar 

  2. Ball J, Carrington M, McMurray J et al (2013) Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol 167:1807–1824. https://doi.org/10.1016/j.ijcard.2012.12.093

    Article  PubMed  Google Scholar 

  3. Boyle A, Kelly D, Zhang Y et al (2005) Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction. J Mol Cell Cardiol 39:213–221. https://doi.org/10.1016/j.yjmcc.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  4. Chichger H, Vang A, O’Connell K et al (2015) PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 308:L827–L836. https://doi.org/10.1152/ajplung.00184.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devaraj S, Venugopal S, Singh U et al (2005) Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase c-{alpha} and -{beta}. Diabetes. 54:85–91. https://doi.org/10.2337/diabetes.54.1.85

    Article  CAS  PubMed  Google Scholar 

  6. Dilaveris P, Giannopoulos G, Synetos A et al (2005) The role of renin angiotensin system blockade in the treatment of atrial fibrillation. Current drug targets. Cardiovasc Haematol Disord 5:387–403. https://doi.org/10.2174/156800605774370317

    Article  CAS  Google Scholar 

  7. Fu H, Liu C, Li J et al (2013) Impaired atrial electromechanical function and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiol J 20:59–67. https://doi.org/10.5603/cj.2013.0010

    Article  PubMed  Google Scholar 

  8. Fu H, Li G, Liu C et al (2015) Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol 26:211–222. https://doi.org/10.1111/jce.12540

    Article  PubMed  Google Scholar 

  9. Fu HLG, Liu C, Li J, Wang X, Cheng L, Liu T (2016) Probucol prevents atrial ion channel remodeling in an alloxan-induced diabetes rabbit model. Oncotarget. 7:83850–83858

    Article  Google Scholar 

  10. Huxley R, Filion K, Konety S et al (2011) Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 108:56–62. https://doi.org/10.1016/j.amjcard.2011.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kawakami T, Kawakami Y, Kitaura J (2002) Protein kinase C beta (PKC beta): normal functions and diseases. J Biochem 132:677–682. https://doi.org/10.1093/oxfordjournals.jbchem.a003273

    Article  CAS  PubMed  Google Scholar 

  12. Knapp L, Klann E (2000) Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem 275:24136–24145. https://doi.org/10.1074/jbc.M002043200

    Article  CAS  PubMed  Google Scholar 

  13. Korantzopoulos P, Kokkoris S, Liu T et al (2007) Atrial fibrillation in end-stage renal disease. Pacing Clin Electrophysiol 30:1391–1397. https://doi.org/10.1111/j.1540-8159.2007.00877.x

    Article  PubMed  Google Scholar 

  14. Koya D, King G (1998) Protein kinase C activation and the development of diabetic complications. Diabetes. 47:859–866. https://doi.org/10.2337/diabetes.47.6.859

    Article  CAS  PubMed  Google Scholar 

  15. Lawrance I, Rogler G, Bamias G et al (2017) Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis 11:1491–1503. https://doi.org/10.1016/j.crohns.2014.09.008

    Article  PubMed  Google Scholar 

  16. Lin G, Liu Y, MacLeod K (2009) Regulation of muscle creatine kinase by phosphorylation in normal and diabetic hearts. Cell Mol Life Sci 66:135–144. https://doi.org/10.1007/s00018-008-8575-3

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Fu Z, Korantzopoulos P et al (2010) Effect of obesity on p-wave parameters in a Chinese population. Ann Noninvasive Electrocardiol, Inc. 15:259–263. https://doi.org/10.1111/j.1542-474X.2010.00373.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Zhu H, Su Z et al (2012) IL-17 contributes to cardiac fibrosis following experimental autoimmune myocarditis by a PKCβ/Erk1/2/NF-κB-dependent signaling pathway. Int Immunol 24:605–612. https://doi.org/10.1093/intimm/dxs056

    Article  CAS  PubMed  Google Scholar 

  19. McHugh D, Sharp E, Scheuer T et al (2000) Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci U S A 97:12334–12338. https://doi.org/10.1073/pnas.210384297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Movahed M, Hashemzadeh M, Jamal M (2005) Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol 105:315–318. https://doi.org/10.1016/j.ijcard.2005.02.050

    Article  PubMed  Google Scholar 

  21. Nagareddy P, Soliman H, Lin G et al (2009) Selective inhibition of protein kinase C beta(2) attenuates inducible nitric oxide synthase-mediated cardiovascular abnormalities in streptozotocin-induced diabetic rats. Diabetes. 58:2355–2364. https://doi.org/10.2337/db09-0432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puglisi J, Yuan W, Timofeyev V et al (2011) Phorbol ester and endothelin-1 alter functional expression of Na+/Ca2+ exchange, K+, and Ca2+ currents in cultured neonatal rat myocytes. Am J Physiol Heart Circ Physiol 300:H617–H626. https://doi.org/10.1152/ajpheart.00388.2010

    Article  CAS  PubMed  Google Scholar 

  23. Rahman F, Kwan G, Benjamin E (2014) Global epidemiology of atrial fibrillation. Nature reviews. Cardiology 11:639–654. https://doi.org/10.1038/nrcardio.2014.118

    Article  PubMed  Google Scholar 

  24. Schmitz-Peiffer C, Biden T (2008) Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes. 57:1774–1783. https://doi.org/10.2337/db07-1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smani T, Calderón-Sanchez E, Gómez-Hurtado N et al (2010) Mechanisms underlying the activation of L-type calcium channels by urocortin in rat ventricular myocytes. Cardiovasc Res 87:459–466. https://doi.org/10.1093/cvr/cvq063

    Article  CAS  PubMed  Google Scholar 

  26. Song X, Yu Q, Dong X et al (2017) Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-κB and MAPK pathways. Int Immunopharmacol 50:30–37. https://doi.org/10.1016/j.intimp.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  27. Sziksz E, Pap D, Lippai R, Béres NJ, Fekete A, Szabó AJ, Vannay Á (2015) Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm 2015:764641. https://doi.org/10.1155/2015/764641

    Article  CAS  Google Scholar 

  28. Thandavarayan R, Giridharan V, Sari F et al (2011) Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced diabetes mellitus. Cell Physiol Biochem 28:911–922. https://doi.org/10.1159/000335805

    Article  CAS  PubMed  Google Scholar 

  29. Way K, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes. 51:2709–2718. https://doi.org/10.2337/diabetes.51.9.2709

    Article  CAS  PubMed  Google Scholar 

  30. Westermann D, Van Linthout S, Dhayat S et al (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507. https://doi.org/10.1007/s00395-007-0673-0

    Article  CAS  PubMed  Google Scholar 

  31. Xia Z, Kuo K, Nagareddy P et al (2007) N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc Res 73:770–782. https://doi.org/10.1016/j.cardiores.2006.11.033

    Article  CAS  PubMed  Google Scholar 

  32. Yeh Y, Wakili R, Qi X et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102. https://doi.org/10.1161/circep.107.754788

    Article  CAS  PubMed  Google Scholar 

  33. Yu X, Zhang Q, Cui W et al (2014) Low molecular weight fucoidan alleviates cardiac dysfunction in diabetic Goto-Kakizaki rats by reducing oxidative stress and cardiomyocyte apoptosis. J Diabetes Res 2014:420929. https://doi.org/10.1155/2014/420929

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yue P, Zhang Y, Du Z et al (2006) Ischemia impairs the association between connexin 43 and M3 subtype of acetylcholine muscarinic receptor (M3-mAChR) in ventricular myocytes. Cell Physiol Biochem 17:129–136. https://doi.org/10.1159/000092074

    Article  CAS  PubMed  Google Scholar 

  35. Zhou X, Yang W, Li J (2006) Ca2+− and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem 281:31337–31347. https://doi.org/10.1074/jbc.M602739200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants to H.F. from the Tianjin Natural Science Foundation (16JCYBJC25000), Key Laboratory Scientific Research Foundation of Second Hospital of Tianjin Medical University (2018ZDSYS03), and Clinical Study of Second Hospital of Tianjin Medical University (2019LC03) and grants (81570298 and 81970270 to T.L.) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Huaying Fu: conception of the work and design of experiments; Haili Wang and Yuanyuan Xu: collection, analysis of data, and drafting of the manuscript; Xinghua Wang, Tong Liu, Aiqing Xu, and Lijun Cheng: recorded and analyzed the experimental data; Huaying Fu, Sharen Lee, Gary Tse, and Guangping Li: data interpretation and critically revised the manuscript.

Corresponding authors

Correspondence to Tong Liu or Huaying Fu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study was approved by the Experimental Animal Administration Committee of Tianjin Medical University and Tianjin Municipal Commission for Experimental Animal Control.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Diabetes-activated PKCβ/NF-κB pathway causes atrial structural remodeling.

• PKCβ/NF-κB pathway activation changed Na+-Ca2+ exchanger current in diabetes.

• Atrial remodeling can be prevented by PKCβ inhibition using ruboxistaurin (RBX).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, Y., Xu, A. et al. PKCβ/NF-κB pathway in diabetic atrial remodeling. J Physiol Biochem 76, 637–653 (2020). https://doi.org/10.1007/s13105-020-00769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00769-7

Keywords

Navigation