Skip to main content

Advertisement

Log in

Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Biocompatible magnetic nanoparticle-mediated magnetic hyperthermia is an innovative, efficient, and safer thermo-therapeutic approach for cancer treatment. Structural and magnetic properties of magnetic nanoparticles as well as external magnetic field parameters are responsible for a controlled heating performance imperative for clinical success. This review covers topics from the nanophysics of magnetic nanoparticles through the basic concepts of magnetism to the different magnetic nanoparticles used for magnetic hyperthermia. Relevant properties beneficial for magnetic hyperthermia including size (nanosize regime of 10–100 nm), shape (anisotropic and isotropic), viscosity of the dispersive medium, and applied magnetic field parameters to optimize the heat dissipation via various mechanisms are also addressed. Primary aim of the present review is to provide an interdisciplinary knowledge platform for the basic understanding of nanomagnetism in order to advance further in the field of nanomedicine. This review pinpoints recent advancements in nanoparticle-tumor tissue interactions and their translation to clinical applications. The present review differs from other contemporary reviews by reporting the up-to-date developments in the nanotechnology aspects of magnetic hyperthermia and addressing the future perspectives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. Knobel, M., Nunes, W.C., Socolovsky, L.M., Biasi, E., Vargas, J.M., Denardin, J.C. 2008. Superparamagnetism and Other Magnetic Features in Granular Materials: A Review on Ideal and Real Systems, Journal of Nanoscience and Nanotechnology, 6, 2836–57.

  2. Dormann, J. L., Fiorani, D. & Tronc, E. 1997. Magnetic Relaxation in Fine-Particle Systems. Advances in Chemical Physics, 283–494.

  3. Dormann, J. L., Fiorani, D. & Tronc, E. 1997. Magnetic Relaxation in Fine-Particle Systems. Advances in Chemical Physics, 283–494; Chamberlin, R. V., Humfeld, K. D., Farrell, D., Yamamuro, S., Ijiri, Y. & Majetich, S. A. 2002. Magnetic relaxation of iron nanoparticles. Journal of Applied Physics, 91, 6961–6963.

  4. Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. 2011. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166, 8–23.

  5. Obaidat, I. M., Issa, B. & Haik, Y. 2015. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials, 5, 63–89.

  6. Obaidat, I. M., Issa, B. & Haik, Y. 2015. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials, 5, 63–89.

  7. Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. 2011. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166, 8–23.

  8. Kumar, C. S. S. R. & Mohammad, F. 2011. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63, 789–808.

References

  • Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Nat Sci Mater Int 26:440–448

    CAS  Google Scholar 

  • Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Hansen MN, Dhagat P, Moses AS, Taratula O, Taratula O (2019) Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 13:6383–6395

    CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    CAS  Google Scholar 

  • Amaya-Jaramillo CD, Pérez-Portilla AP, Serrano-Olmedo JJ, Ramos-Gómez M (2017) Induction of cell death by magnetic particles in response to a gradient magnetic field inside a uniform magnetic field. J Nanopart Res 19:329

    Google Scholar 

  • Andersen HL, Christensen M (2015) In situ powder X-ray diffraction study of magnetic CoFe2O4 nanocrystallite synthesis. Nanoscale 7:3481–3490

    CAS  Google Scholar 

  • Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607

    CAS  Google Scholar 

  • Arends TJH, Nativ O, Maffezzini M, De Cobelli O, Canepa G, Verweij F, Moskovitz B, Van Der Heijden AG, Witjes JA (2016) Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette-Guerin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur Urol 69:1046–1052

    CAS  Google Scholar 

  • Arteaga-Cardona F, Rojas-Rojas K, Costo R, Mendez-Rojas MA, Hernando A, De La Presa P (2016) Improving the magnetic heating by disaggregating nanoparticles. J Alloys Compd 663:636–644

    CAS  Google Scholar 

  • Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD (2017) Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 5:901–952

    CAS  Google Scholar 

  • Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119

    Google Scholar 

  • Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    CAS  Google Scholar 

  • Basu A, Kunduru KR, Abtew E, Domb AJ (2016) Correction to polysaccharide-based conjugates for biomedical applications. Bioconjug Chem 27:1427–1428

    CAS  Google Scholar 

  • Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI). Nanoscale 8:12162–12169

    CAS  Google Scholar 

  • Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A (2017) Targeted magnetic nanotheranostics of cancer. Molecules 22:975

    Google Scholar 

  • Berdov BA, Menteshashvili GZ (1990) Thermoradiotherapy of patients with locally advanced carcinoma of the rectum. Int J Hyperth 6:881–890

    CAS  Google Scholar 

  • Briceño S, Hernandez AC, Sojo J, Lascano L, Gonzalez G (2017) Degradation of magnetite nanoparticles in biomimetic media. J Nanopart Res 19:140

    Google Scholar 

  • Chamberlin RV, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Magnetic relaxation of iron nanoparticles. J Appl Phys 91:6961–6963

    CAS  Google Scholar 

  • Chandra S, Das R, Kalappattil V, Eggers T, Harnagea C, Nechache R, Phan M-H, Rosei F, Srikanth H (2017) Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy. Nanoscale 9:7858–7867

    CAS  Google Scholar 

  • Chandunika RK, Vijayaraghavan R, Sahu NK (2018) MnFe2O4/CdSe magneto-fluorescent nanocomposite for possible biomedical applications. AIP Conf Proc 1942:050102

    Google Scholar 

  • Chen R, Christiansen MG, Anikeeva P (2013) Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7:8990–9000

    CAS  Google Scholar 

  • Chen J, Liu J, Hu Y, Tian Z, Zhu Y (2019) Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Sci Technol Adv Mater 20:1043–1054

    CAS  Google Scholar 

  • Chen B, Xing J, Li M, Liu Y, Ji M (2020) DOX@ ferumoxytol-medical chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro. Colloids Surf B: Biointerfaces 190:110896

    CAS  Google Scholar 

  • Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, Qoronfleh MW (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20

    CAS  Google Scholar 

  • Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31:6317–6324

    CAS  Google Scholar 

  • Cho H-Y, Lee T, Yoon J, Han Z, Rabie H, Lee K-B, Su WW, Choi J-W (2018) Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl Mater Interfaces 10:9301–9309

    CAS  Google Scholar 

  • Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32:2183–2193

    CAS  Google Scholar 

  • Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D (2011) Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer. BJU Int 107:912–918

    CAS  Google Scholar 

  • Coombes RC (2015) Drug testing in the patient: toward personalized cancer treatment. Sci Transl Med 7:284ps10

    Google Scholar 

  • Cruz MM, Ferreira LP, Ramos J, Mendo SG, Alves AF, Godinho M, Carvalho MD (2017) Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J Alloys Compd 703:370–380

    CAS  Google Scholar 

  • Cullity BD, Graham CD (2008) Ferromagnetism. In: B.D. Cullity and C.D. Graham (ed) Introduction to magnetic materials, 2nd edn. Wiley, New York, pp 115–149

  • Dalal M, Greneche J-M, Satpati B, Ghzaiel TB, Mazaleyrat F, Ningthoujam RS, Chakrabarti PK (2017) Microwave absorption and the magnetic hyperthermia applications of Li0.3Zn0.3Co0.1Fe2.3O4 nanoparticles in multiwalled carbon nanotube matrix. ACS Appl Mater Interfaces 9:40831–40845

    CAS  Google Scholar 

  • Das R, Alonso J, Nemati Porshokouh Z, Kalappattil V, Torres D, Phan M-H, Garaio E, García JÁ, Sanchez Llamazares JL, Srikanth H (2016) Tunable high aspect ratio Iron oxide nanorods for enhanced hyperthermia. J Phys Chem C 120:10086–10093

    CAS  Google Scholar 

  • Das P, Colombo M, Prosperi D (2019) Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B: Biointerfaces 174:42–55

    CAS  Google Scholar 

  • Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E, Bodis S (2015) Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev 41:742–753

    CAS  Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    CAS  Google Scholar 

  • Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperth 29:715–729

    Google Scholar 

  • Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. Adv Chem Phys:283–494

  • Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W, Töpfer J, Bellemann ME (2007) Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 308:305–312

    CAS  Google Scholar 

  • El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH (2017) Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine 12:387–402

    CAS  Google Scholar 

  • Espinosa A, Bugnet M, Radtke G, Neveu S, Botton GA, Wilhelm C, Abou-Hassan A (2015) Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia. Nanoscale 7:18872–18877

    CAS  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    CAS  Google Scholar 

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic Iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    CAS  Google Scholar 

  • Gao H, Zhang T, Zhang Y, Chen Y, Liu B, Wu J, Liu X, Li Y, Peng M, Zhang Y, Xie G, Zhao F, Fan HM (2020) Ellipsoidal magnetite nanoparticles: a new member of the magnetic-vortex nanoparticles family for efficient magnetic hyperthermia. J Mater Chem B 8:515–522

    CAS  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    CAS  Google Scholar 

  • Gogoi M, Sarma HD, Bahadur D, Banerjee R (2013) Biphasic magnetic nanoparticles–nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine 9:955–970

    Google Scholar 

  • Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R (2017) Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol 9:555–565

    CAS  Google Scholar 

  • Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950

    CAS  Google Scholar 

  • Guardia P, Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    CAS  Google Scholar 

  • Guisasola E, Asín L, Beola L, De La Fuente JM, Baeza A, Vallet-Regí M (2018) Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces 10:12518–12525

    CAS  Google Scholar 

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510

    CAS  Google Scholar 

  • Ha PT, Le TTH, Bui TQ, Pham HN, Ho AS, Nguyen LT (2019) Doxorubicin release by magnetic inductive heating and in vivo hyperthermia-chemotherapy combined cancer treatment of multifunctional magnetic nanoparticles. New J Chem 43:5404–5413

    CAS  Google Scholar 

  • Hayashi K, Moriya M, Sakamoto W, Yogo T (2009) Chemoselective synthesis of folic acid−functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21:1318–1325

    CAS  Google Scholar 

  • Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–844

    Google Scholar 

  • Hemery G, Keyes AC, Garaio E, Rodrigo I, Garcia JA, Plazaola F, Garanger E, Sandre O (2017) Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem 56:8232–8243

    CAS  Google Scholar 

  • Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condensed Matter 20:385214

    Google Scholar 

  • Hirosawa F, Iwasaki T, Watano S (2017) Synthesis and magnetic induction heating properties of Gd-substituted Mg–Zn ferrite nanoparticles. Appl Nanosci 7:209–214

    CAS  Google Scholar 

  • Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11:673–692

    CAS  Google Scholar 

  • Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–7160

    CAS  Google Scholar 

  • Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, Ricolleau C, Roux S, Wilhelm C, Gazeau F, Bazzi R (2012) Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 116:15702–15712

    CAS  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    CAS  Google Scholar 

  • Issels RD, Abdel-Rahman S, Wendtner CM, Falk MH, Kurze V, Sauer H, Aydemir U, Hiddemann W (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer 37:1599–1608

    CAS  Google Scholar 

  • Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem B-C, Abdel-Rahman S, Daugaard S, Salat C, Wendtner C-M, Vujaskovic Z, Wessalowski R, Jauch K-W, Dürr HR, Ploner F, Baur-Melnyk A, Mansmann U, Hiddemann W, Blay J-Y, Hohenberger P (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–570

    CAS  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60

    CAS  Google Scholar 

  • Jeotikanta M, Meiying X, Julian B, Jacob E, Takele S, Sanjay M, Liu JP (2020) Enhancing the magnetic and inductive heating properties of Fe3O4 nanoparticles via morphology control. Nanotechnology 31:275706

    Google Scholar 

  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21:637–647

    CAS  Google Scholar 

  • Jordan A, Scholz R, Wust P, Fak H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

  • Jordan A, Scholz R, Maier-Hauff K, Van Landeghem FKH, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, Von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol 78:7–14

    CAS  Google Scholar 

  • Kafrouni L, Savadogo O (2016) Recent progress on magnetic nanoparticles for magnetic hyperthermia. Progress Biomater 5:147–160

    CAS  Google Scholar 

  • Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, Derosa F, Mir FF, Fenton OS, Anderson DG (2015) Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett 15:7300–7306

    CAS  Google Scholar 

  • Khan A, Arunima Rajan S, Chandunika RK, Sahu NK (2019) Magneto-plasmonic stimulated breast cancer nanomedicine. In: N.D. Thorat and J.Bauer (ed) External Field and Radiation Stimulated Breast Cancer Nanotheranostics. IOP Publishing, US, pp 1–730627. https://doi.org/10.1088/2053-2563/ab2907

  • Khoshnevisan K, Poorakbar E, Baharifar H, Barkhi M (2019) Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review. Magnetochemistry 5:36

    CAS  Google Scholar 

  • Khurshid H, Alonso Masa J, Nemati Z, Phan M-H, Mukherjee P, Fdez-Gubieda ML, Barandiarán J, Srikanth H (2015) Anisotropy effects in magnetic hyperthermia: a comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. J Appl Phys 117:17A337

    Google Scholar 

  • Kim Y-J, Ebara M, Aoyagi T (2013) A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater 23:5753–5761

    CAS  Google Scholar 

  • Kim H-C, Kim E, Jeong SW, Ha T-L, Park S-I, Lee SG, Lee SJ, Lee SW (2015) Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale 7:16470–16480

    CAS  Google Scholar 

  • Kim D, Kim J, Park YI, Lee N, Hyeon T (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4:324–336

    CAS  Google Scholar 

  • Kitamura K, Kuwano H, Watanabe M, Nozoe T, Yasuda M, Sumiyoshi K, Saku M, Sugimachi K (1995) Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma. J Surg Oncol 60:55–58

    CAS  Google Scholar 

  • Knobel M, Nunes WC, Socolovsky LM, Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 6:2836–2857

    Google Scholar 

  • Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci 110:10753–10758

    CAS  Google Scholar 

  • Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66–66

    Google Scholar 

  • Kotoulas A, Dendrinou-Samara C, Sarafidis C, Kehagias T, Arvanitidis J, Vourlias G, Angelakeris M, Kalogirou O (2017) Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency. J Nanopart Res 19:399

    Google Scholar 

  • Krishnan KM (2016) Magnetic materials: from isolated moments to ordered arrangements. Fundamentals and Applications of Magnetic Materials. Oxford University Press, Oxford

    Google Scholar 

  • Kulshrestha P, Gogoi M, Bahadur D, Banerjee R (2012) In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf B: Biointerfaces 96:1–7

    CAS  Google Scholar 

  • Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    CAS  Google Scholar 

  • Kumar S, Daverey A, Sahu NK, Bahadur D (2013) In vitro evaluation of PEGylated mesoporous MgFe2O4 magnetic nanoassemblies (MMNs) for chemo-thermal therapy. J Mater Chem B 1:3652–3660

    CAS  Google Scholar 

  • Kumar S, Daverey A, Khalilzad-Sharghi V, Sahu NK, Kidambi S, Othman SF, Bahadur D (2015) Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. RSC Adv 5:53180–53188

    CAS  Google Scholar 

  • Lan S, Xie W, Wang J, Hu J, Tang W, Yang W, Yu X, Liu H (2018) PEGylated polyethylenimine-stabilized polypyrrole nanoparticles loaded with DOX for chemo-photothermal therapy of cancer cells. J Nanopart Res 20:300

    Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23

    CAS  Google Scholar 

  • Le Renard P-E, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E (2010) The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 31:691–705

    Google Scholar 

  • Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    CAS  Google Scholar 

  • Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7:642

    CAS  Google Scholar 

  • Liauw SL, Connell PP, Weichselbaum RR (2013) New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 5:173sr2

    Google Scholar 

  • Liu XL, Yang Y, Ng CT, Zhao LY, Zhang Y, Bay BH, Fan HM, Ding J (2015) Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater 27:1939–1944

    CAS  Google Scholar 

  • Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang X-J (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10:3793–3815

    CAS  Google Scholar 

  • Ma X, Wang Y, Liu X-L, Ma H, Li G, Li Y, Gao F, Peng M, Fan HM, Liang X-J (2019) Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horizons 4:1450–1459

    CAS  Google Scholar 

  • Mai T, Hilt JZ (2017) Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications. J Nanopart Res 19:253

    Google Scholar 

  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81:53–60

    CAS  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324

    Google Scholar 

  • Majumder P, Bhunia S, Chaudhuri A (2018) A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Chem Commun 54:1489–1492

    CAS  Google Scholar 

  • Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L (2020) Iron metabolism at the interface between host and pathogen: from nutritional immunity to antibacterial development. Int J Mol Sci 21:2145

    CAS  Google Scholar 

  • Martinelli C, Pucci C, Ciofani G (2019) Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 3:011502

    Google Scholar 

  • Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estradé S, Peiró F, Saghi Z, Midgley PA, Conde-Leborán I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of Iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652

    Google Scholar 

  • Maurizi L, Papa A-L, Dumont L, Bouyer F, Walker P, Vandroux D, Millot N (2015) Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J Biomed Nanotechnol 11:126–136

    CAS  Google Scholar 

  • Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117:11405–11411

    CAS  Google Scholar 

  • Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P, Serna CJ, Lázaro FJ, Villanueva Á, Morales MDP, Barber DF (2011) Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–2952

    Google Scholar 

  • Menelaou M, Georgoula K, Simeonidis K, Dendrinou-Samara C (2014) Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia. Dalton Trans 43:3626–3636

    CAS  Google Scholar 

  • Mohapatra J, Liu JP (2018) Rare-earth-free permanent magnets: the past and future. In: Bruck E (ed) Handbo ok of Magnetic Materials, 1st edn. Elsevier, Netherlands, pp 1–57

  • Mohapatra J, Xing M, Liu JP (2019) Inductive thermal effect of ferrite magnetic nanoparticles. Materials 12:3208

    CAS  Google Scholar 

  • Muthiah M, Park I-K, Cho C (2013) Surface modification of Iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31:1224–1236

    CAS  Google Scholar 

  • Neha R, Jaiswal A, Bellare J, Sahu NK (2017) Synthesis of surface grafted mesoporous magnetic nanoparticles for cancer therapy. J Nanosci Nanotechnol 17:5181–5188

    CAS  Google Scholar 

  • Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA, Phan MH, Srikanth H (2016) Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J Phys Chem C 120:8370–8379

    CAS  Google Scholar 

  • Nemati Z, Alonso J, Rodrigo I, Das R, Garaio E, García JÁ, Orue I, Phan M-H, Srikanth H (2018) Improving the heating efficiency of Iron oxide nanoparticles by tuning their shape and size. J Phys Chem C 122:2367–2381

    CAS  Google Scholar 

  • Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721

    CAS  Google Scholar 

  • Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89

    Google Scholar 

  • Pan J, Hu P, Guo Y, Hao J, Ni D, Xu Y, Bao Q, Yao H, Wei C, Wu Q, Shi J (2020) Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 14:1033–1044

    CAS  Google Scholar 

  • Parekh K, Bhardwaj A, Jain N (2019) Preliminary in-vitro investigation of magnetic fluid hyperthermia in cervical cancer cells. J Magn Magn Mater 497:166057

    Google Scholar 

  • Peigneux A, Oltolina F, Colangelo D, Iglesias GR, Delgado AV, Prat M, Jimenez-Lopez C (2019) Functionalized biomimetic magnetic nanoparticles as effective nanocarriers for targeted chemotherapy. Part Part Syst Charact 36:1900057

    Google Scholar 

  • Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302

    Google Scholar 

  • Phung DC, Nguyen HT, Phuong Tran TT, Jin SG, Yong CS, Truong DH, Tran TH, Kim JO (2019) Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J Pharm Investig 49:519–526

    Google Scholar 

  • Pinel S, Thomas N, Boura C, Barberi-Heyob M (2019) Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug Deliv Rev 138:344–357

    CAS  Google Scholar 

  • Pleasance E, Titmuss E, Williamson L, Kwan H, Culibrk L, Zhao EY, Dixon K, Fan K, Bowlby R, Jones MR, Shen Y, Grewal JK, Ashkani J, Wee K, Grisdale CJ, Thibodeau ML, Bozoky Z, Pearson H, Majounie E, Vira T, Shenwai R, Mungall KL, Chuah E, Davies A, Warren M, Reisle C, Bonakdar M, Taylor GA, Csizmok V, Chan SK, Zong Z, Bilobram S, Muhammadzadeh A, D’souza D, Corbett RD, Macmillan D, Carreira M, Choo C, Bleile D, Sadeghi S, Zhang W, Wong T, Cheng D, Brown SD, Holt RA, Moore RA, Mungall AJ, Zhao Y, Nelson J, Fok A, Ma Y, Lee MKC, Lavoie J-M, Mendis S, Karasinska JM, Deol B, Fisic A, Schaeffer DF, Yip S, Schrader K, Regier DA, Weymann D, Chia S, Gelmon K, Tinker A, Sun S, Lim H, Renouf DJ, Laskin J, Jones SJM, Marra MA (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat Cancer 1:452–468

    Google Scholar 

  • Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Döblinger M, Banerjee R, Bahadur D, Plank C (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142:108–121

    CAS  Google Scholar 

  • Qu Y, Li J, Ren J, Leng J, Lin C, Shi D (2014) Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale 6:12408–12413

    CAS  Google Scholar 

  • Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736

    CAS  Google Scholar 

  • Rachakatla R, Balivada S, Seo G-M, Myers C, Wang H, Samarakoon T, Dani R, Pyle M, Kroh F, Walker B, Leaym X, Koper O, Chikan V, Bossmann S, Tamura M, Troyer D (2010) Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano 4:7093–7104

    CAS  Google Scholar 

  • Rajan SA, Sahu NK (2020) Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids Surf A Physicochem Eng Asp 603:125210

    Google Scholar 

  • Rajan SA, Khan A, Asrar S, Raza H, Das RK, Sahu NK (2019a) Synthesis of ZnO/Fe3O4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus. Iet Nanobiotechnol 13:682–687

    Google Scholar 

  • Rajan SA, Sharma M, Sahu NK (2019b) Water-to-PEG variation: morphology and hyperthermic behaviour of iron oxide. J Supercond Nov Magn 6:1603–1609

    Google Scholar 

  • Ren Y, Zhang H, Chen B, Cheng J, Cai X, Liu R, Xia G, Wu W, Wang S, Ding J, Gao C, Wang J, Bao W, Wang L, Tian L, Song H, Wang X (2012) Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomedicine 7:2261–2269

    CAS  Google Scholar 

  • Roy S, Zhu D, Parak WJ, Feliu N (2020) Lysosomal proton buffering of poly(ethylenimine) measured in situ by fluorescent pH-sensor microcapsules. ACS Nano 14:8012–8023

    CAS  Google Scholar 

  • Sahu NK, Singh NS, Pradhan L, Bahadur D (2014) Ce3+ sensitized GdPO4:Tb3+ with iron oxide nanoparticles: a potential biphasic system for cancer theranostics. Dalton Trans 43:11728–11738

    CAS  Google Scholar 

  • Sahu NK, Gupta J, Bahadur D (2015) PEGylated FePt–Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans 44:9103–9113

    CAS  Google Scholar 

  • Saini L, Kumar Patra M, Dixit A (2020) Large scale re-producible synthesis and magnetic properties of Ni/graphite core-shell nanostructured materials. J Magn Magn Mater 501:166444

    CAS  Google Scholar 

  • Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2014) Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 4:5020

    CAS  Google Scholar 

  • Salas G, Veintemillas-Verdaguer S, Morales MDP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth 29:768–776

    Google Scholar 

  • Salunkhe A, Khot V, Patil SI, Tofail SAM, Bauer J, Thorat ND (2020) MRI guided magneto-chemotherapy with high-magnetic-moment iron oxide nanoparticles for cancer theranostics. ACS Appl Bio Mater 3:2305–2313

  • Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera Gil P (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28–28

    CAS  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7

    Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    CAS  Google Scholar 

  • Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res 87:1179–1183

    CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Google Scholar 

  • Simeonidis K, Morales MP, Marciello M, Angelakeris M, De La Presa P, Lazaro-Carrillo A, Tabero A, Villanueva A, Chubykalo-Fesenko O, Serantes D (2016) In-situ particles reorientation during magnetic hyperthermia application: shape matters twice. Sci Rep 6:38382

    CAS  Google Scholar 

  • Singh AP, Biswas A, Shukla A, Maiti P (2019) Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 4:33

    Google Scholar 

  • Soleymani M, Khalighfard S, Khodayari S, Khodayari H, Kalhori MR, Hadjighassem MR, Shaterabadi Z, Alizadeh AM (2020) Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep 10:1695

    CAS  Google Scholar 

  • Spaldin NA (2010) Magnetic materials: fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL (2018) Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials 8:306

  • Stefanou G, Sakellari D, Simeonidis K, Kalabaliki T, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2014) Tunable AC magnetic hyperthermia efficiency of Ni ferrite nanoparticles. IEEE Trans Magn 50:4601207

    Google Scholar 

  • Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338

    CAS  Google Scholar 

  • Sugimach K, Kuwano H, Ide H, Toge T, Saku M, Oshiumi Y (1994) Chemotherapy combined with or without hyperthermia for patients with oesophageal carcinoma: a prospective randomized trial. Int J Hyperth 10:485–493

    Google Scholar 

  • Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    CAS  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci 106:19268–19273

    CAS  Google Scholar 

  • Tapeinos C, Marino A, Battaglini M, Migliorin S, Brescia R, Scarpellini A, De Julián Fernández C, Prato M, Drago F, Ciofani G (2019) Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale 11:72–88

    CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    CAS  Google Scholar 

  • Thorat ND, Otari SV, Patil RM, Khot VM, Prasad AI, Ningthoujam RS, Pawar SH (2013) Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application. Colloids Surf B: Biointerfaces 111:264–269

    CAS  Google Scholar 

  • Thorat ND, Tofail SAM, Von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J (2019) Physically stimulated nanotheranostics for next generation cancer therapy: focus on magnetic and light stimulations. Appl Phys Rev 6:041306

    Google Scholar 

  • Thorat ND, Townley H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SAM (2020) Correction to “progress in remotely triggered hybrid nanostructures for next-generation brain cancer theranostics”. ACS Biomater Sci Eng 6:758–758

    CAS  Google Scholar 

  • Torres TE, Lima E, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF (2019) The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia. Sci Rep 9:3992

    Google Scholar 

  • Ullah S, Seidel K, Türkkan S, Warwas DP, Dubich T, Rohde M, Hauser H, Behrens P, Kirschning A, Köster M, Wirth D (2019) Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. J Control Release 294:327–336

    CAS  Google Scholar 

  • Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107:123909

    Google Scholar 

  • Van Der Zee J, González D, Van Rhoon GC, Van Dijk JDP, Van Putten WLJ, Hart AAM (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet 355:1119–1125

    Google Scholar 

  • Van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U, Scholz R, Thiesen B, Brück W, Von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    CAS  Google Scholar 

  • Verwaal VJ, Bruin S, Boot H, Van Slooten G, Van Tinteren H (2008) 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol 15:2426–2432

    Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59:491–504

    CAS  Google Scholar 

  • Wu K, Wang J-P (2017) Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields. AIP Adv 7:056327

    Google Scholar 

  • Wu K, Su D, Saha R, Liu J, Wang J-P (2019) Investigating the effect of magnetic dipole-dipole interaction on magnetic particle spectroscopy (MPS): implications for magnetic nanoparticle-based bioassays and magnetic particle imaging (MPI). J. Phys. D: Appl. Phys. 52:335002

  • Wust P, Gneveckow U, Boehmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A (2006) Magnetic nanoparticles for interstitial thermotherapy - feasibility, tolerance and achieved temperatures. Int J Hyperth 22:673–685

    CAS  Google Scholar 

  • Xie L, Jin W, Zuo X, Ji S, Nan W, Chen H, Gao S, Zhang Q (2020) Construction of small-sized superparamagnetic Janus nanoparticles and their application in cancer combined chemotherapy and magnetic hyperthermia. Biomater Sci 8:1431–1441

    CAS  Google Scholar 

  • Xue W, Liu X-L, Ma H, Xie W, Huang S, Wen H, Jing G, Zhao L, Liang X-J, Fan HM (2018) AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer. J Mater Chem B 6:2289–2303

    CAS  Google Scholar 

  • Yang R, An Y, Miao F, Li M, Liu P, Tang Q (2014) Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine 9:4231–4243

    Google Scholar 

  • Yang J, Fan L, Xu Y, Xia J (2017) Iron oxide nanoparticles with different polymer coatings for photothermal therapy. J Nanopart Res 19:333

    CAS  Google Scholar 

  • Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13:1602225

    Google Scholar 

  • Zhang T, Li G, Qian T, Qu JF, Xiang XQ, Li XG (2006) Effect of particle size on the structure and magnetic properties of La0.6Pb0.4MnO3 nanoparticles. J Appl Phys 100:094324

    Google Scholar 

  • Zhang N, Xu C, Azer A, Liu H (2019) Dispersibility and characterization of polyvinyl alcohol–coated magnetic nanoparticles in poly(glycerol sebacate) for biomedical applications. J Nanopart Res 21:275

    CAS  Google Scholar 

  • Zhou J, Li J, Ding X, Liu J, Luo Z, Liu Y, Ran Q, Cai K (2015) Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 26:425101

    Google Scholar 

  • Zhu X, Zhang H, Huang H, Zhang Y, Hou L, Zhang Z (2015) Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology 26:365103

    Google Scholar 

  • Zyuzin MV, Cassani M, Barthel MJ, Gavilan H, Silvestri N, Escudero A, Scarpellini A, Lucchesi F, Teran FJ, Parak WJ, Pellegrino T (2019) Confining iron oxide nanocubes inside submicrometric cavities as a key strategy to preserve magnetic heat losses in an intracellular environment. ACS Appl Mater Interfaces 11:41957–41971

    CAS  Google Scholar 

Download references

Funding

The authors would like to gratefully acknowledge the Department of Science & Technology-Science and Engineering Research Board (DST-SERB) (Project grant No. ECR/2016/000301) research grant for financially supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Arunima Rajan : conceptualization, data curation, writing – original draft; Dr. Niroj Kumar Sahu: conceptualization, writing – review and editing.

Corresponding author

Correspondence to Niroj Kumar Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, A., Sahu, N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J Nanopart Res 22, 319 (2020). https://doi.org/10.1007/s11051-020-05045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05045-9

Keywords

Navigation