Skip to main content
Log in

Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Adipic Acid (AA) is a valued platform chemical compound, which can be used as a precursor of nylon-6,6. Due to the generation of an enormous amount of nitric oxide metabolites and the growing depletion of oil resources as a result of AA production from a mixture of cyclohexanol and cyclohexanone, the microbial methods for synthesizing AA have attracted significant attention. Of the several AA-producing pathways, the reverse adipate degradation pathway in Thermobifida fusca (Tfu RADP) is reported to be the most efficient, which has been confirmed in Escherichia coli. In this study, the heterologous Tfu RADP was constructed for producing AA in S. cerevisiae by co-expressing genes of Tfu_0875, Tfu_2399, Tfu_0067, Tfu_1647, Tfu_2576, and Tfu_2576. The AA titer combined with biomass, cofactors and other by-products was all determined after fermentation. During batch fermentation in a shake flask, the maximum AA titer was 3.83 mg/L, while the titer increased to 10.09 mg/L during fed-batch fermentation in a 5-L bioreactor after fermentation modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alini, S., Basile, F., Blasioli, S., Rinaldi, C., and Vaccari, A. 2007. Development of new catalysts for N2O-decomposition from adipic acid plant. Appl. Catal. B 70, 323–329.

    CAS  Google Scholar 

  • Armstrong, K.A., Som, T., Volkert, F.C., Rose, A., and Broach, J.R. 1989. Propagation and expression of genes in yeast using 2-micron circle vectors. Biotechnology 13, 165–192.

    CAS  PubMed  Google Scholar 

  • Averesch, N.J.H., Martínez, V.S., Nielsen, L.K., and Krömer, J.O. 2018. Towards synthetic biology strategies for adipic acid production — an in-silico tool for combined thermodynamics and stoichiometric analysis of metabolic networks. ACS Synth. Biol. 7, 490–509.

    CAS  PubMed  Google Scholar 

  • Bart, J.C.J. and Cavallaro, S. 2015. Transiting from adipic acid to bio-adipic acid Part II. Biosynthetic pathways. Ind. Eng. Chem. Res. 54, 567–576.

    CAS  Google Scholar 

  • Beardslee, T. and Picataggio, S. 2012. Bio-based adipic acid from renewable oils. Lipid Tech. 24, 223–225.

    CAS  Google Scholar 

  • Bernofsky, C. and Swan, M. 1973. An improved cycling assay for nicotinamide adenine dinucleotide. Anal. Biochem. 53, 452–458.

    CAS  PubMed  Google Scholar 

  • Bozell, J.J. and Petersen, G.R. 2010. Technology development for the production of biobased products from biorefinery carbohydrates — the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554.

    CAS  Google Scholar 

  • Brindle, N.P., Zammit, V.A., and Pogson, C.I. 1985. Regulation of carnitine palmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, a tissue with a low capacity for fatty acid synthesis. Biochem. J. 232, 177–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgard, A., Pharkya, P., and Osterhout, R. 2010. Microorganisms for the production of adipic acid and other compounds. US Patent No.7,799,545 B2. Genomatica, Inc., San Diego, California, USA.

    Google Scholar 

  • Canelas, A.B., van Gulik, W.M., and Heijnen, J.J. 2008. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 100, 734–743.

    CAS  PubMed  Google Scholar 

  • Chaustova, L., Miliukienė, V., and Zimkus, A. 2010. Cell de-energization prevents plasmid transformation of yeast Saccharomyces cerevisiae: evidence for the requirement of ATP. Cent. Eur. J. Biol. 5, 78–82.

    CAS  Google Scholar 

  • Cheong, S., Clomburg, J.M., and Gonzalez, R. 2016. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34, 556–561.

    CAS  PubMed  Google Scholar 

  • Clomburg J.M., Blankschien, M.D., Vick, J.E., Chou, A., Kim, S., and Gonzalez, R. 2015. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab. Eng. 28, 202–212.

    CAS  PubMed  Google Scholar 

  • Deng Y. and Fong, S.S. 2011. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab. Eng. 13, 570–577.

    CAS  PubMed  Google Scholar 

  • Deng, Y. and Mao, Y. 2015. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6. J. Appl. Microbiol. 119, 1057–1063.

    CAS  PubMed  Google Scholar 

  • Elgersma, Y., van Roermund, C.W., Wanders, R.J., and Tabak, H.F. 1995. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14, 3472–3479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flagfeldt, D.B., Siewers, V., Huang, L., and Nielsen, J. 2010. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545–551.

    Google Scholar 

  • Frenkel, E.P. and Kitchens, R.L. 1981. Acetyl-CoA synthetase from bakers’ yeast (Saccharomyces cerevisiae): EC 6.2.1.1 acetate:CoA ligase (AMP-forming). In Lowenstein, J.M. (ed.), Methods in Enzymology, vol. 71, pp. 317–324. Academic Press, Cambridge, Massachusatts, USA.

    Google Scholar 

  • Ganzhorn, A.J., Green, D.W., Hershey, A.D., Gould, R.M., and Plapp, B.V. 1987. Kinetic characterization of yeast alcohol dehydrogenases. Amino acid residue 294 and substrate specificity. J. Biol. Chem. 262, 3754–3761.

    CAS  PubMed  Google Scholar 

  • Gibson, D.G. 2014. Programming biological operating systems: genome design, assembly and activation. Nat. Methods 11, 521–526.

    CAS  PubMed  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345.

    CAS  PubMed  Google Scholar 

  • Gietz, R.D. and Woods, R.A. 2006. Yeast transformation by the LiAc/SS carrier DNA/PEG method. In Xiao, W. (ed.), Yeast Protocol. Methods in Molecular Biology, vol. 313. pp. 107–120. Humana Press, Totowa, New Jersey, USA.

    Google Scholar 

  • Gunukula, S. and Anex, R.P. 2017. Techno-economic analysis of multiple bio-based routes to adipic acid. Biofuels Bioprod. Bioref. 11, 897–907.

    CAS  Google Scholar 

  • Heux, S., Cachon, R., and Dequin, S. 2006. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8, 303–314.

    CAS  PubMed  Google Scholar 

  • Huang, D., Yang, K., Liu, J., Xu, Y., Wang, Y., Wang, R., Liu, B., and Feng, L. 2017. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab. Eng. 41, 23–38.

    CAS  PubMed  Google Scholar 

  • Jou, W.S., Chen, K.N., Chao, D.Y., Lin, C.Y., and Yeh, J.T. 2001. Flame retardant and dielectric properties of glass fibre reinforced nylon-66 filled with red phosphorous. Polym. Degrad. Stab. 74, 239–245.

    CAS  Google Scholar 

  • Koebmann, B.J., Westerhoff, H.V., Snoep, J.L., Dan, N., and Jensen, P.R. 2002a. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184, 3909–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koebmann, B.J., Westerhoff, H.V., Snoep, J.L., Solem, C., Pedersen, M.B., Nilsson, D., Michelsen, O., and Jensen, P.R. 2002b. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth. Mol. Biol. Rep. 29, 41–45.

    CAS  PubMed  Google Scholar 

  • Kruyer, N.S. and Peralta-Yahya, P. 2017. Metabolic engineering strategies to bio-adipic acid production. Curr. Opin. Biotechnol. 45, 136–143.

    CAS  PubMed  Google Scholar 

  • Leavitt, J.M., Wagner, J.M., Tu, C.C., Tong, A., Liu, Y., and Alper, H.S. 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 12, 1600687.

    Google Scholar 

  • Lee, F.W. and Da Silva, N.A. 1997. Improved efficiency and stability of multiple cloned gene insertions at the delta sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339–345.

    CAS  PubMed  Google Scholar 

  • Lee, K.M. and Da Silva, N.A. 2005. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22, 431–440.

    CAS  PubMed  Google Scholar 

  • Lin, S.J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. 2004. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Killilea, D.W., and Ames, B.N. 2002. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-α-lipoic acid. Proc. Natl. Acad. Sci. USA 99, 1876–1881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔct method. Methods 25, 402–408.

    CAS  PubMed  Google Scholar 

  • Lutstorf, U. and Megnet, R. 1968. Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae: I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. Arch. Biochem. Biophys. 126, 933–944.

    CAS  PubMed  Google Scholar 

  • Meaden, P.G., Dickinson, F.M., Mifsud, A., Tessier, W., Westwater, J., Bussey, H., and Midgley, M. 1997. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. Yeast 13, 1319–1327.

    CAS  PubMed  Google Scholar 

  • Mizuno, A., Tabei, H., and Iwahuti, M. 2006. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing. J. Biosci. Bioeng. 101, 31–37.

    CAS  PubMed  Google Scholar 

  • Nakamura, S., Takasaki, H., Kobayashi, K., and Kato, A. 1993. Hyperglycosylation of hen egg white lysozyme in yeast. J. Biol. Chem. 268, 12706–12712.

    CAS  PubMed  Google Scholar 

  • Parekh, R.N., Shaw, M.R., and Wittrup, K.D. 1996. An integrating vector for tunable, high copy, stable integration into the dispersed Ty δ sites of Saccharomyces cerevisiae. Biotechnol. Prog. 12, 16–21.

    CAS  Google Scholar 

  • Przybyla-Zawislak, B., Dennis, R.A., Zakharkin, S.O., and McCammon, M.T. 1998. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. Eur. J. Biochem. 258, 736–743.

    CAS  PubMed  Google Scholar 

  • Raj, K., Partow, S., Correia, K., Khusnutdinova, A.N., Yakunin, A.F., and Mahadevan, R. 2018. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab. Eng. Commun. 6, 28–32.

    PubMed  PubMed Central  Google Scholar 

  • Romanos, M.A., Scorer, C.A., and Clare, J.J. 1992. Foreign gene expression in yeast: a review. Yeast 8, 423–488.

    CAS  PubMed  Google Scholar 

  • San, K.Y., Bennett, G.N., Berrios-Rivera, S.J., Vadali, R.V., Yang, Y.T., Horton, E., Rudolph, F.B., Sariyar, B., and Blackwood, K. 2002. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab. Eng. 4, 182–192.

    CAS  PubMed  Google Scholar 

  • Skoog, E., Shin, J.H., Saez-Jimenez, V., Mapelli, V., and Olsson, L. 2018. Biobased adipic acid — The challenge of developing the production host. Biotechnol. Adv. 36, 2248–2263.

    CAS  PubMed  Google Scholar 

  • Smith, M.G., Des Etages, S.G., and Snyder, M. 2004. Microbial synergy via an ethanol-triggered pathway. Mol. Cell. Biol. 24, 3874–3884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suástegui, M., Ng, C.Y., Chowdhury, A., Sun, W., Cao, M., House, E., Maranas, C.D., and Shao, Z. 2017. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng. 42, 134–144.

    PubMed  Google Scholar 

  • Yu, J.L., Xia, X.X., Zhong, J.J., and Qian, Z.G. 2014. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol. Bioeng. 111, 2580–2586.

    CAS  PubMed  Google Scholar 

  • Zhao, M., Huang, D., Zhang, X., Koffas, M.A.G., Zhou, J., and Deng, Y. 2018. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab. Eng. 47, 254–262.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Key R&D Program of China (2019YFA0905502), the National Natural Science Foundation of China (21877053, 31601564), the Natural Science Foundation of Jiangsu Province (BK20181345), the Fundamental Research Funds for the Central Universities (JUSRP51705A), the Open Foundation of Jiangsu Key Laboratory of Industrial Biotechnology (KLIB-KF201807), and the Postgraduate Research & Practice Innovation Program of Jiangsu Provence (KYCX17_1424).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunying Zhao or Yu Deng.

Additional information

Conflict of Interest

All authors declare that they have no conflicts of interest with this manuscript.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Y., Wang, J. et al. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae. J Microbiol. 58, 1065–1075 (2020). https://doi.org/10.1007/s12275-020-0261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0261-7

Keywords

Navigation