Skip to main content
Log in

Oecophyllibacter saccharovorans gen. nov. sp. nov., a bacterial symbiont of the weaver ant Oecophylla smaragdina

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15–37°C (optimum, 28–30°C) and in the presence of 0–1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56–94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai, T., Iizuka, H., and Komagata, K. 1964. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol. 10, 95–126.

    Google Scholar 

  • Aydin, Y.A. and Aksoy, N.D. 2009. Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Presented at the WCECS 2009: World congress on engineering and computer science, Hong Kong 1, 20–22.

    Google Scholar 

  • Brown, B.P. and Wernegreen, J.J. 2019. Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genomics 20, 472.

    PubMed  PubMed Central  Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

    PubMed  PubMed Central  Google Scholar 

  • Chua, K.O., Song, S.L., Yong, H.S., See-Too, W.S., Yin, W.F., and Chan, K.G. 2018. Microbial community composition reveals spatial variation and distinctive core microbiome of the weaver ant Oecophylla smaragdina in Malaysia. Sci. Rep. 8, 10777.

    PubMed  PubMed Central  Google Scholar 

  • Cleenwerck, I., Camu, N., Engelbeen, K., De Winter, T., Vandemeulebroecke, K., De Vos, P., and De Vuyst, L. 2007. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int. J. Syst. Evol. Microbiol. 57, 1647–1652.

    CAS  PubMed  Google Scholar 

  • Crotti, E., Chouaia, B., Alma, A., Favia, G., Bandi, C., Bourtzis, K., and Daffonchio, D. 2016. Acetic acid bacteria as symbionts of insects. In Matsushita, K., Toyama, H., Tonouchi, N., and Okamoto-Kainuma, A. (eds.), Acetic Acid Bacteria, pp. 121–142. Springer, Tokyo, Japan.

    Google Scholar 

  • Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., et al. 2010. Acetic acid bacteria, newly emerging symbionts of insects. Appl. Environ. Microbiol. 76, 6963–6970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti, E., Sansonno, L., Prosdocimi, E.M., Vacchini, V., Hamdi, C., Cherif, A., Gonella, E., Marzorati, M., and Balloi, A. 2013. Microbial symbionts of honeybees: a promising tool to improve honeybee health. N. Biotechnol. 30, 716–722.

    CAS  PubMed  Google Scholar 

  • Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B., and Flouri, T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294.

    CAS  PubMed  Google Scholar 

  • De Ley, J., Gillis, M., and Swings, J. 1984. Family VI. Acetobacteraceae. In Krieg, N.R. and Holt, J.G. (eds.), Bergey’s manual of systematic bacteriology, pp. 267–278. The Williams & Wilkins Co., Baltimore, USA.

    Google Scholar 

  • Ding, W., Baumdicker, F., and Neher, R.A. 2018. panX: pan-genome analysis and exploration. Nucleic Acids Res. 46, e5.

    PubMed  Google Scholar 

  • Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., et al. 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 104, 9047–9051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldhaar, H., Straka, J., Krischke, M., Berthold, K., Stoll, S., Mueller, M.J., and Gross, R. 2007. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 5, 48.

    PubMed  PubMed Central  Google Scholar 

  • Gillis, M. and De Ley, J. 1980. Intra-and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Evol. Bacteriol. 30, 7–27.

    CAS  Google Scholar 

  • Goh, S.Y., Khan, S.A., Tee, K.K., Kasim, N.H.A., Yin, W.F., and Chan, K.G. 2016. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque. Sci. Rep. 6, 20702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, R.J., Borges, M.F., Rosa, M.F., Castro-Gómez, R.J.H., and Spinosa, W.A. 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol. Biotechnol. 56, 139–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselé, F., Swings, J., and De Ley, J. 1980. A rapid, simple and simultaneous detection of 2-keto-, 5-keto and 2, 5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zbl. Bakt. Mik. Hyg. IC 1, 178–181.

    Google Scholar 

  • Heras, J., Dominguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., and Zarazaga, M. 2015. GelJ-a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16, 270.

    PubMed  PubMed Central  Google Scholar 

  • Hölldobler, B. and Wilson, E.O. 1990. The ants. Harvard University Press, Massachusetts, USA.

    Google Scholar 

  • Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S., and Fudou, R. 2004. Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int. J. Syst. Evol. Microbiol. 54, 2263–2267.

    CAS  PubMed  Google Scholar 

  • Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersters, K., Lisdiyanti, P., Komagata, K., and Swings, J. 2006. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, pp. 163–200. Springer, New York, USA.

    Google Scholar 

  • Kim, K.H., Cho, G.Y., Chun, B.H., Weckx, S., Moon, J.Y., Yeo, S.H., and Jeon, C.O. 2018. Acetobacter oryzifermentans sp. nov., isolated from Korean traditional vinegar and reclassification of the type strains of Acetobacter pasteurianus subsp. ascendens (Henneberg 1898) and Acetobacter pasteurianus subsp. paradoxus (Frateur 1950) as Acetobacter ascendens sp. nov., comb. nov. Syst. Appl. Microbiol. 41, 324–332.

    PubMed  Google Scholar 

  • Konstantinidis, K.T. and Tiedje, J.M. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., Chouaia, B., Bandi, C., Alma, A., Daffonchio, D., Mavragani-Tsipidou, P., et al. 2009. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl. Environ. Microbiol. 75, 3281–3288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., and Stamatakis, A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krzewinski, J.W., Nguyen, C.D., Foster, J.M., and Burns, J.L. 2001. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis. J. Clin. Microbiol. 39, 3597–3602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics, pp. 115–175. Wiley & Sons, New York, USA.

    Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    CAS  PubMed  Google Scholar 

  • Li, L., Praet, J., Borremans, W., Nunes, O.C., Manaia, C.M., Cleenwerck, I., Meeus, I., Smagghe, G., De Vuyst, L., and Vandamme, P. 2015. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int. J. Syst. Evol. Microbiol. 65, 267–273.

    CAS  PubMed  Google Scholar 

  • Lin, J.Y., Russell, J.A., Sanders, J.G., and Wertz, J.T. 2016. Cephaloticoccus gen. nov., a new genus of ‘Verrucomicrobia’ containing two novel species isolated from Cephalotes ant guts. Int. J. Syst. Evol. Microbiol. 66, 3034–3040.

    CAS  PubMed  Google Scholar 

  • Madhaiyan, M., Saravanan, V.S., and See-Too, W.S. 2020. Genome-based analyses reveal the presence of 12 heterotypic synonyms in the genus Streptomyces and emended descriptions of Streptomyces bottropensis, Streptomyces celluloflavus, Streptomyces fulvissimus, Streptomyces glaucescens, Streptomyces murinus, and Streptomyces variegatus. Int. J. Syst. Evol. Microbiol. 70, 3924–3929.

    CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.

    PubMed  PubMed Central  Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214.

    CAS  PubMed  Google Scholar 

  • Peng, R.K. and Christian, K. 2004. The weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the northern territory of Australia. Int. J. Pest Manage. 50, 107–114.

    Google Scholar 

  • Peng, R.K., Christian, K., and Gibb, K. 1995. The effect of the green ant, Oecophylla smaragdina (Hymenoptera: Formicidae), on insect pests of cashew trees in Australia. Bull. Entomol. Res. 85, 279–284.

    Google Scholar 

  • Pimid, M., Hassan, A., Tahir, N.A., and Thevan, K. 2012. Colony structure of the weaver ant, Oecophylla smaragdina (Fabricius) (Hymenoptera: Formicidae). Sociobiology 59, 1–10.

    Google Scholar 

  • Qin, Q.L., Xie, B.B., Zhang, X.Y., Chen, X.L., Zhou, B.C., Zhou, J., Oren, A., and Zhang, Y.Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215.

    PubMed  PubMed Central  Google Scholar 

  • Richter, M. and Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roh, S.W., Nam, Y.D., Chang, H.W., Kim, K.H., Kim, M.S., Ryu, J.H., Kim, S.H., Lee, W.J., and Bae, J.W. 2008. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl. Environ. Microbiol. 74, 6171–6177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Shimwell, J.L., Carr, J.G., and Rhodes, M.E. 1960. Differentiation of Acetomonas and Pseudomonas. J. Gen. Microbiol. 23, 283–286.

    Google Scholar 

  • Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    PubMed  Google Scholar 

  • Spitaels, F., Li, L., Wieme, A., Balzarini, T., Cleenwerck, I., Van Land-schoot, A., De Vuyst, L., and Vandamme, P. 2014. Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int. J. Syst. Evol. Microbiol. 64, 1083–1089.

    CAS  PubMed  Google Scholar 

  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall, B.J. 1990a. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13, 128–130.

    CAS  Google Scholar 

  • Tindall, B.J. 1990b. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66, 199–202.

    CAS  Google Scholar 

  • Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Way, M.J. and Khoo, K.C. 1989. Relationships between Helopeltis theobromae damage and ants with special reference to Malaysian cocoa smallholdings. J. Plant Prot. Tropics. 6, 1–11.

    Google Scholar 

  • Yamada Y. 2016. Systematics of acetic acid bacteria. In Matsushita, K., Toyama, H., Tonouchi, N., and Okamoto-Kainuma, A. (eds.), Acetic acid bacteria. Springer, Tokyo, Japan.

    Google Scholar 

  • Yamada, Y., Aida, K., and Uemura, T. 1968. Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially of so-called intermediate strains. Agric. Biol. Chem. 32, 786–788.

    CAS  Google Scholar 

  • Yamada, Y., Hosono, R., Lisdyanti, P., Widyastuti, Y., Saono, S., Uchimura, T., and Komagata, K. 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 45, 23–28.

    CAS  PubMed  Google Scholar 

  • Yamada, Y. and Yukphan, P. 2008. Genera and species in acetic acid bacteria. Int. J. Food Microbiol. 125, 15–24.

    CAS  PubMed  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzéby, J., Amann, R., and Rosselló-Móra, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.

    CAS  PubMed  Google Scholar 

  • Yong, H.S., Song, S.L., Chua, K.O., Lim, P.E., and Eamsobhana, P. 2019. Microbiota and potential opportunistic pathogens associated with male and female fruit flies of Malaysian Bactrocera carambolae (Insecta: Tephritidae). Meta Gene 19, 185–192.

    Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yukphan, P., Malimas, T., Muramatsu, Y., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M., and Yamada, Y. 2011. Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. Biosci. Biotechnol. Biochem. 75, 419–426.

    CAS  PubMed  Google Scholar 

  • Yun, J.H., Lee, J.Y., Hyun, D.W., Jung, M.J., and Bae, J.W. 2017. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int. J. Syst. Evol. Microbiol. 67, 2184–2188.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Aharon Oren for his advice on etymology and nomenclature of the strains. KOC thanks MyBrain15 Postgraduate Scholarship Programme for the scholarship (MyPhD, KPT(B)900909146137). WSST thanks the Bright Sparks Program of the University of Malaya for scholarship awarded. This work was supported by University of Malaya Research Grants (FRGS grant FP022-2018A), University of Malaya High Impact Research Grants (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, Grant No. H-50001-A000027; UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/01, Grant No. A-000001-50001) awarded to KGC and Postgraduate Research (PPP) Grant (Grant No. PG089-2015B) awarded to KOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Gan Chan.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interests.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, KO., See-Too, WS., Tan, JY. et al. Oecophyllibacter saccharovorans gen. nov. sp. nov., a bacterial symbiont of the weaver ant Oecophylla smaragdina. J Microbiol. 58, 988–997 (2020). https://doi.org/10.1007/s12275-020-0325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0325-8

Keywords

Navigation